会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • System and method for detecting ground glass nodules in medical images
    • 用于检测医学图像中玻璃结节的系统和方法
    • US07555152B2
    • 2009-06-30
    • US11324503
    • 2006-01-03
    • Lin HongYumao LuHong Shen
    • Lin HongYumao LuHong Shen
    • G06K9/00A61K39/00
    • G06T7/0012G06T7/11G06T7/143G06T2207/10081G06T2207/30064
    • Detecting ground glass nodules in medical images includes calculating a probability distribution function of background lung tissue in a chest image, estimating a variation range of the background tissue probability distribution function, estimating a probability distribution function of an image point belonging to a ground glass nodule from the variation range of the background tissue probability distribution function by using a function corresponding to the variation range of the background tissue probability distribution function, and calculating a log likelihood function of the image from the background tissue probability distribution function and the estimated ground glass nodule probability distribution function, wherein the log likelihood function represents the confidence that a point in the image is not part of a ground glass nodule. The log likelihood function value for each point is compared to a confidence value of the background tissue, to determine if the point is a candidate ground glass nodule location.
    • 在医学图像中检测磨玻璃结节包括计算胸部图像中背景肺组织的概率分布函数,估计背景组织概率分布函数的变化范围,估计属于研磨玻璃结节的图像点的概率分布函数, 通过使用与背景组织概率分布函数的变化范围相对应的函数来计算背景组织概率分布函数的变化范围,以及从背景组织概率分布函数和估计的研磨玻璃结节概率计算图像的对数似然函数 分布函数,其中对数似然函数表示图像中的点不是研磨玻璃结节的一部分的置信度。 将每个点的对数似然函数值与背景组织的置信度值进行比较,以确定该点是否为候选研磨玻璃结节位置。
    • 15. 发明授权
    • Feature processing for lung nodules in computer assisted diagnosis
    • 计算机辅助诊断肺结节特征处理
    • US08107699B2
    • 2012-01-31
    • US12170639
    • 2008-07-10
    • Lin HongChristopher V. AlvinoHong Shen
    • Lin HongChristopher V. AlvinoHong Shen
    • G06K9/00
    • G06T7/0012G06T2207/30061G06T2207/30064
    • Feature processing is provided for lung nodules in computer-assisted diagnosis. A feature that may better distinguish nodules from background is extracted using a Hough transform. Rather than relying on a specific boundary shape, the Hough transform accumulates evidence associated with a region, such as a ring region. The accumulated evidence provides a feature score without requiring a nodule to fit a specific shape. In another approach, a background level is determined from extracted features. Rather than attempting to normalize an image prior to extraction, the features are normalized. The feature normalization and generalized Hough transform extraction may be used together or alone.
    • 在计算机辅助诊断中为肺结节提供特征处理。 使用霍夫变换提取可以更好地区分结节与背景的特征。 霍夫变换不是依赖于特定的边界形状,而是累积与区域相关联的证据,例如环形区域。 积累的证据提供了一个特征分数,而不需要结节来适应特定的形状。 在另一种方法中,从提取的特征确定背景级别。 在尝试在提取之前对图像进行归一化,而不是将特征归一化。 特征归一化和广义霍夫变换提取可以一起使用或单独使用。
    • 20. 发明申请
    • Methods and Apparatus for Automatic Body Part Identification and Localization
    • 自动身体部位识别和定位的方法和装置
    • US20080112605A1
    • 2008-05-15
    • US11933518
    • 2007-11-01
    • Lin HongShen Hong
    • Lin HongShen Hong
    • A61B5/00
    • G06T7/74G06T2207/30004
    • Methods and apparatus are disclosed for automatically identifying and locating body parts in medical imaging. To automatically identify body parts of in an image, an identification and location algorithm is used. This establishes a reference frame in relation to the image. Then, a location of the head in relation to the frame is established. After upper and lower boundaries of the head are determined, a neck section of the image is identified. The neck section is identified using the lower boundary of the head section. The location of the neck section is then found. A thorax cage section is found and located positively below the neck section. The abdomen and pelvis are identified together and ultimately separately located and identified.
    • 公开了用于在医学成像中自动识别和定位身体部位的方法和装置。 为了自动识别图像中的身体部位,使用识别和位置算法。 这建立了与图像相关的参考帧。 然后,建立头部相对于框架的位置。 在确定头部的上边界和下边界之后,识别图像的颈部。 使用头部的下边界识别颈部。 然后找到颈部的位置。 发现一个胸部保持架部分,并正确地位于颈部部分。 腹部和骨盆被一起识别,最终分开定位和识别。