会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明专利
    • Manufacturing method of magnetic powder for forming sintered compact of rare earth magnet precursor
    • 用于形成稀土磁铁前驱体的烧结制备磁粉的制造方法
    • JP2013084804A
    • 2013-05-09
    • JP2011224115
    • 2011-10-11
    • Toyota Motor Corpトヨタ自動車株式会社
    • SAKUMA NORITSUGUKISHIMOTO HIDESHIMIYAMOTO NORITAKAKATO AKIRAMANABE AKIRAICHIKIZAKI DAISUKESHOJI TETSUYAHARAKAWA SHOICHI
    • H01F41/02B22F1/00C22C33/02C22C38/00H01F1/057H01F1/08
    • H01F1/20B22F9/04B22F2009/048C22C33/0278C22C38/002C22C38/005C22C38/10C22C2202/02H01F1/0571H01F1/0577
    • PROBLEM TO BE SOLVED: To provide a manufacturing method of magnetic powder for forming a sintered compact of a rare earth magnet precursor in which the magnetic power without a coarse particle in a composition is exquisitely and efficiently screened to allow manufacturing the magnetic powder including the composition consisting of optimum nano-sized crystal grains.SOLUTION: There is provided a manufacturing method of a magnetic powder p for forming a sintered compact S which comprises crystal grains which are a Nd-Fe-B based main phase of a nanocrystal composition and a grain boundary phase, and is a precursor of a rare earth magnet which is formed by applying hot plastic processing to the sintered compact S to add anisotropy and diffusing an alloy in it for improving coercive field strength. In the manufacturing method, a molten metal is discharged on a cooling roller R to produce a quenched ribbon B, and the quenched ribbon is smashed into a size range between 50 μm and 1000 μm to produce the magnetic powder within a mass range between 0.0003 mg and 0.3 mg. The magnetic powder within the mass range is checked whether the magnetic powder is attracted to a magnet whose surface magnetic flux density is 2 mT or less. The magnetic powder p that is not attracted, is selected to be the magnetic powder to form the sintered compact S.
    • 解决的问题:提供一种用于形成稀土磁体前体的烧结体的磁性粉末的制造方法,其中组合物中没有粗颗粒的磁力被精确和有效地筛选以允许制造磁粉 包括由最佳纳米级晶粒组成的组合物。 解决方案:提供了一种用于形成烧结体S的磁性粉末p的制造方法,该烧结体S包括作为纳米晶体组成的Nd-Fe-B系主相和晶界相的晶粒,并且为 通过对烧结体S进行热塑性加工而形成的稀土类磁体的前体,以增加其各向异性并扩散其中的合金以提高矫顽场强度。 在制造方法中,将熔融金属排出到冷却辊R上,制成淬火带B,将淬火带粉碎成50μm〜1000μm的范围,制成磁铁粉末的质量范围为0.0003mg 和0.3mg。 检查质量范围内的磁粉是否磁性粉末被吸引到表面磁通密度为2mT以下的磁体。 未被吸引的磁性粉末p被选择为磁性粉末以形成烧结体S.版权所有(C)2013,JPO&INPIT
    • 12. 发明专利
    • Method for manufacturing rare earth magnet
    • 制造稀土磁铁的方法
    • JP2013145832A
    • 2013-07-25
    • JP2012006165
    • 2012-01-16
    • Toyota Motor Corpトヨタ自動車株式会社
    • MIYAMOTO NORITAKAHAGA KAZUAKISHOJI TETSUYAOMURA SHINYAICHIKIZAKI DAISUKEMANABE AKIRANAGASHIMA SHINYA
    • H01F41/02C22C28/00C22C33/02C22C38/00H01F1/057H01F1/08
    • PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth magnet, capable of manufacturing a rare earth magnet excellent in squareness and high in maximum energy product.SOLUTION: A method for manufacturing a rare earth magnet includes: a first step of obtaining selected magnetic powder Q by removing magnetic powder having a particle size of less than 50 μm among magnetic powder comprising a main phase of an RE-T-B system (RE represents at least one of Nd, Pr and Y, and T represents Fe or one obtained by substituting a part of Fe with Co) and a grain boundary phase around the main phase, mixing modified alloy powder T comprising an RE-M alloy (M represents a transition metal element or a typical metal element, and RE may comprise RE1-RE2 where RE1 and RE2 represent at least one of Nd, Pr and Y) having a melting point of 700°C or below with the selected magnetic powder Q, and performing hot press working to manufacture a compact S; and a second step of subjecting the compact S to a hot plasticity processing to manufacture a rare earth magnet C.
    • 要解决的问题:提供一种制造稀土磁铁的方法,该方法能够制造出具有优异的矩形性和最高能量产品的稀土磁体。解决方案:一种制造稀土磁体的方法包括:第一步骤: 通过除去包含RE-TB体系的主相的磁性粉末(RE表示Nd,Pr和Y中的至少一种),并且T表示Fe或获得的一种的磁性粉末,除去粒径小于50μm的磁性粉末的选定的磁性粉末Q 通过用Co的一部分替代Fe和在主相周围的晶界相,混合包含RE-M合金的改性合金粉末T(M表示过渡金属元素或典型的金属元素,RE可以包括RE1-RE2 其中RE1和RE2代表Nd,Pr和Y中的至少一种),所选择的磁性粉末Q具有700℃或更低的熔点,并进行热压加工以制造压块S; 以及对压坯S进行热塑性加工以制造稀土磁体C的第二步骤。
    • 13. 发明专利
    • Method of manufacturing permanent magnet
    • 制造永磁体的方法
    • JP2010267790A
    • 2010-11-25
    • JP2009117713
    • 2009-05-14
    • Toyota Motor Corpトヨタ自動車株式会社
    • MIYAMOTO NORITAKAMANABE AKIRANAKAMURA KENJIOMURA SHINYA
    • H01F41/02H02K15/03
    • Y02T10/641
    • PROBLEM TO BE SOLVED: To provide a method of manufacturing a permanent magnet which is improved in at least one of magnetic flux density and coercive force as the magnetic characteristics of the permanent magnet, and which is never degraded in those characteristics.
      SOLUTION: The method of manufacturing the permanent magnet includes the first step of preparing the permanent magnet E having the metal composition constituted of a main phase S and a grain boundary phase R and exposing an active surface K of the permanent magnet E under an oxygen-free or low oxygen atmosphere, and the second step of coating the active surface K with a metal film C under the oxygen-free or low oxygen atmosphere, diffusing a first metal component forming the metal film C into the grain boundary phase R, and heating it to form a grain boundary phase of a metal alloy consisting of a second metal component which has ever formed the grain boundary phase R and the first metal component.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 解决的问题:提供一种制造永磁体的方法,所述永磁体的磁通密度和矫顽力中的至少一个作为永久磁铁的磁特性得到改善,并且在这些特性中不会降低。 解决方案:制造永磁体的方法包括制备具有由主相S和晶界相R构成的金属组成的永磁体E的第一步骤,并将永磁体E的有效面K暴露在 无氧或低氧气氛,第二步是在无氧或低氧气氛下用金属膜C涂覆活性表面K,将形成金属膜C的第一金属成分扩散到晶界相R 加热,形成由形成了晶界相R的第二金属成分和第一金属成分构成的金属合金的晶界相。 版权所有(C)2011,JPO&INPIT
    • 17. 发明专利
    • WEAR RESISTANT IRON-BASE SINTERED ALLOY AND ITS PRODUCTION
    • JPH06220591A
    • 1994-08-09
    • JP25870993
    • 1993-10-15
    • TOYOTA MOTOR CORP
    • TAKAHASHI YOSHITAKAMANABE AKIRAKANEKO TADATAKAOKAJIMA HIROSHI
    • C22C33/02C22C38/00
    • PURPOSE:To produce an iron-base sintered alloy for valve seat excellent in wear resistance. CONSTITUTION:A powder mixture is prepared by mixing, by weight ratio, 2-30% of Ni-base alloy powder having a composition consisting of 5-20% Mo, 20-40% Cr, 10-20% W, and the balance Ni with inevitable impurities and 0.2-2% of graphite powder with an iron-base alloy powder having a composition consisting of, by weight ratio, 2-15% Co, 2-10%, preferably >3%-10%, Mo, and the balance Fe with inevitable impurities, which is compacted. Further, 0.2-2% of solid lubricant is mixed with the above, if necessary, and they are compacted. The resulting green compact is sintered at a temp. between 1323K and the melting point of the Ni-base alloy powder. Because alloy powders are used and matrix structure is sintered, the degree of homogenization of entering into solid solution of alloying elements in a matrix is increased and superior corrosion resistance, oxidation resistance, and wear resistance can be obtained with minimal alloy quantity, and further, wear resistance can be improved because Mo, Cr, and W in the Ni-base alloy powder combine with C to form carbides. Moreover, machinability can be improved by adding free cutting agent.