会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Modeling a user's emotion and personality in a computer user interface
    • 在计算机用户界面中建模用户的情感和个性
    • US5987415A
    • 1999-11-16
    • US109233
    • 1998-06-30
    • John S. BreeseJohn Eugene Ball
    • John S. BreeseJohn Eugene Ball
    • G10L17/26G10L3/00
    • H04N21/466G10L17/26H04N21/4663
    • The invention is embodied in a computer user interface including an observer capable of observing user behavior, an agent capable of conveying emotion and personality by exhibiting corresponding behavior to a user, and a network linking user behavior observed by said observer and emotion and personality conveyed by said agent. The network can include an observing network facilitating inferencing user emotional and personality states from the behavior observed by the observer as well as an agent network facilitating inferencing of agent behavior from emotion and personality states to be conveyed by the agent. In addition, a policy module can dictate to the agent network desired emotion and personality states to be conveyed by the agent based upon user emotion and personality states inferred by the observing network. Typically, each network is a stochastic model. Each stochastic model is preferably a Bayesian network, so that the observing network is a first Bayesian network while the agent network is a second Bayesian network. Generally, the first and second Bayesian networks are similar copies of one another. Each of the two Bayesian networks include a first layer of multi-state nodes representing respective emotional and personality variables, and a second layer of multi-state nodes representing respective behavioral variables. Each one of the nodes includes probabilities linking each state in the one node with states of others of the nodes. More specifically, each one of the nodes in the first layer includes probabilities linking the states of the one first layer node to the states of nodes in the second layer. Similarly, each one of the nodes in the second layer include probabilities linking the states of the one second layer node to states of nodes in the first layer.
    • 本发明体现在包括能够观察用户行为的观察者的计算机用户界面中,能够通过向用户展示相应行为而传达情感和个性的代理以及链接由所述观察者观察到的用户行为的网络以及由 代理人 该网络可以包括一个观察网络,便于从观察者观察到的行为推断用户情绪和个性状态,以及代理网络,便于将代理人行为从情绪和人格状态推断以由代理人传达。 此外,策略模块可以根据由观察网络推断出的用户情感和个性状态来指示代理网络期望的情感和个性状态由代理传达。 通常,每个网络都是随机模型。 每个随机模型优选地是贝叶斯网络,使得观察网络是第一个贝叶斯网络,而代理网络是第二个贝叶斯网络。 通常,第一和第二贝叶斯网络是相似的副本。 两个贝叶斯网络中的每一个包括表示各自的情绪和个性变量的第一层多状态节点,以及表示相应的行为变量的第二层多状态节点。 每个节点包括将一个节点中的每个状态与其他节点的状态相关联的概率。 更具体地,第一层中的每个节点包括将一个第一层节点的状态与第二层中的节点的状态链接的概率。 类似地,第二层中的每个节点包括链接一个第二层节点的状态与第一层中的节点状态的概率。
    • 12. 发明授权
    • Modeling emotion and personality in a computer user interface
    • 在计算机用户界面中建模情感和个性
    • US06185534B2
    • 2001-02-06
    • US09047160
    • 1998-03-23
    • John S. BreeseJohn Eugene Ball
    • John S. BreeseJohn Eugene Ball
    • G01L300
    • H04N21/466G10L17/26H04N21/4663
    • The invention is embodied in a computer user interface including an observer capable of observing user behavior, an agent capable of conveying emotion and personality by exhibiting corresponding behavior to a user, and a network linking user behavior observed by said observer and emotion and personality conveyed by said agent. The network can include an observing network facilitating inferencing user emotional and personality states from the behavior observed by the observer as well as an agent network facilitating inferencing of agent behavior from emotion and personality states to be conveyed by the agent. In addition, a policy module can dictate to the agent network desired emotion and personality states to be conveyed by the agent based upon user emotion and personality states inferred by the observing network. Typically, each network is a stochastic model. Each stochastic model is preferably a Bayesian network, so that the observing network is a first Bayesian network while the agent network is a second Bayesian network. Generally, the first and second Bayesian networks are similar copies of one another. Each of the two Bayesian networks include a first layer of multi-state nodes representing respective emotional and personality variables, and a second layer of multi-state nodes representing respective behavioral variables. Each one of the nodes includes probabilities linking each state in the one node with states of others of the nodes. More specifically, each one of the nodes in the first layer includes probabilities linking the states of the one first layer node to the states of nodes in the second layer. Similarly, each one of the nodes in the second layer include probabilities linking the states of the one second layer node to states of nodes in the first layer.
    • 本发明体现在包括能够观察用户行为的观察者的计算机用户界面中,能够通过向用户展示相应行为而传达情感和个性的代理以及链接由所述观察者观察到的用户行为的网络以及由 代理人 该网络可以包括一个观察网络,便于从观察者观察到的行为推断用户情绪和个性状态,以及代理网络,便于将代理人行为从情绪和人格状态推断以由代理人传达。 此外,策略模块可以根据由观察网络推断出的用户情感和个性状态来指示代理网络期望的情感和个性状态由代理传达。 通常,每个网络都是随机模型。 每个随机模型优选地是贝叶斯网络,使得观察网络是第一个贝叶斯网络,而代理网络是第二个贝叶斯网络。 通常,第一和第二贝叶斯网络是相似的副本。 两个贝叶斯网络中的每一个包括表示各自的情绪和个性变量的第一层多状态节点,以及表示相应的行为变量的第二层多状态节点。 每个节点包括将一个节点中的每个状态与其他节点的状态相关联的概率。 更具体地,第一层中的每个节点包括将一个第一层节点的状态与第二层中的节点的状态链接的概率。 类似地,第二层中的每个节点包括链接一个第二层节点的状态与第一层中的节点状态的概率。
    • 13. 发明授权
    • Methods and apparatus for matching entities and for predicting an
attribute of an entity based on an attribute frequency value
    • 用于匹配实体和用于基于属性频率值预测实体的属性的方法和装置
    • US6018738A
    • 2000-01-25
    • US10824
    • 1998-01-22
    • John S. BreeseCarl M. Kadie
    • John S. BreeseCarl M. Kadie
    • G06Q30/06G06F17/30
    • G06Q30/06Y10S707/962Y10S707/99935
    • Matching (e.g., via correlation or similarity process) entities having attributes, some of which have associated values. The values of the attributes may be adjusted based on number of entities that have values for a particular attribute so that the values decrease as the number increases. The attributes of the entities may be harmonized and provided with default values so that entities being matched have common attributes defined by the union of the attributes of the entities being matched. The attributes of the entities may be expanded and provided with default values so that the entities being matched have attributes that neither had originally. The match values may be normalized to provide a weight value which may be used to predict an attribute value of a new entity based on known attribute values of known entities. The weight values may be tuned such that relatively high weights are amplified and relatively low weights are suppressed.
    • 具有属性(例如,经由相关或相似性处理)匹配(其中一些具有相关联的值)。 可以基于具有特定属性的值的实体的数量来调整属性的值,使得值随着数量的增加而减小。 实体的属性可以被协调并且具有默认值,使得被匹配的实体具有由被匹配的实体的属性的并集定义的共同属性。 可以扩展实体的属性并提供默认值,使得匹配的实体具有原始的属性。 匹配值可以被归一化以提供可以用于基于已知实体的已知属性值来预测新实体的属性值的权重值。 可以调整权重值,使得相对较高的权重被放大并且相对较低的权重被抑制。
    • 14. 发明授权
    • Method and apparatus, using attribute set harmonization and default attribute values, for matching entities and predicting an attribute of an entity
    • 方法和装置,使用属性集协调和默认属性值,用于匹配实体和预测实体的属性
    • US06353813B1
    • 2002-03-05
    • US09010818
    • 1998-01-22
    • John S. BreeseCarl M. Kadie
    • John S. BreeseCarl M. Kadie
    • G06N304
    • G06F17/30867Y10S707/99933Y10S707/99935Y10S707/99936Y10S707/99945
    • Matching (e.g., via correlation or similarity process) entities having attributes, some of which have associated values. The values of the attributes may be adjusted based on number of entities that have values for a particular attribute so that the values decrease as the number increases. The attributes of the entities may be harmonized and provided with default values so that entities being matched have common attributes defined by the union of the attributes of the entities being matched. The attributes of the entities may be expanded and provided with default values so that the entities being matched have attributes that neither had originally. Match values may be normalized to provide a weight value which may be used to predict an attribute value of a new entity based on known attribute values of known entities. The weight values may be tuned such that relatively high weights are amplified and relatively low weights are suppressed.
    • 具有属性(例如,经由相关或相似性处理)匹配(其中一些具有相关联的值)。 可以基于具有特定属性的值的实体的数量来调整属性的值,使得值随着数量的增加而减小。 实体的属性可以被协调并且具有默认值,使得被匹配的实体具有由被匹配的实体的属性的并集定义的共同属性。 可以扩展实体的属性并提供默认值,使得匹配的实体具有原始的属性。 匹配值可以被归一化以提供可以用于基于已知实体的已知属性值来预测新实体的属性值的权重值。 可以调整权重值,使得相对较高的权重被放大并且相对较低的权重被抑制。
    • 15. 发明授权
    • Modeling and projecting emotion and personality from a computer user interface
    • 从计算机用户界面建模和投射情感和个性
    • US06212502B1
    • 2001-04-03
    • US09109232
    • 1998-06-30
    • John Eugene BallJohn S. Breese
    • John Eugene BallJohn S. Breese
    • G10L1100
    • H04N21/466G10L17/26H04N21/4663
    • The invention is embodied in a computer user interface including an observer capable of observing user behavior, an agent capable of conveying emotion and personality by exhibiting corresponding behavior to a user, and a network linking user behavior observed by said observer and emotion and personality conveyed by said agent. The network can include an observing network facilitating inferencing user emotional and personality states from the behavior observed by the observer as well as an agent network facilitating inferencing of agent behavior from emotion and personality states to be conveyed by the agent. In addition, a policy module can dictate to the agent network desired emotion and personality states to be conveyed by the agent based upon user emotion and personality states inferred by the observing network. Typically, each network is a stochastic model. Each stochastic model is preferably a Bayesian network, so that the observing network is a first Bayesian network while the agent network is a second Bayesian network. Generally, the first and second Bayesian networks are similar copies of one another. Each of the two Bayesian networks include a first layer of multi-state nodes representing respective emotional and personality variables, and a second layer of multi-state nodes representing respective behavioral variables. Each one of the nodes includes probabilities linking each state in the one node with states of others of the nodes. More specifically, each one of the nodes in the first layer includes probabilities linking the states of the one first layer node to the states of nodes in the second layer. Similarly, each one of the nodes in the second layer include probabilities linking the states of the one second layer node to states of nodes in the first layer.
    • 本发明体现在包括能够观察用户行为的观察者的计算机用户界面中,能够通过向用户展示相应行为而传达情感和个性的代理以及链接由所述观察者观察到的用户行为的网络以及由 代理人 该网络可以包括一个观察网络,便于从观察者观察到的行为推断用户情绪和个性状态,以及代理网络,便于将代理人行为从情绪和人格状态推断以由代理人传达。 此外,策略模块可以根据由观察网络推断出的用户情感和个性状态来指示代理网络期望的情感和个性状态由代理传达。 通常,每个网络都是随机模型。 每个随机模型优选地是贝叶斯网络,使得观察网络是第一个贝叶斯网络,而代理网络是第二个贝叶斯网络。 通常,第一和第二贝叶斯网络是相似的副本。 两个贝叶斯网络中的每一个包括表示各自的情绪和个性变量的第一层多状态节点,以及表示相应的行为变量的第二层多状态节点。 每个节点包括将一个节点中的每个状态与其他节点的状态相关联的概率。 更具体地,第一层中的每个节点包括将一个第一层节点的状态与第二层中的节点的状态链接的概率。 类似地,第二层中的每个节点包括链接一个第二层节点的状态与第一层中的节点状态的概率。
    • 16. 发明授权
    • Methods and apparatus for tuning a match between entities having
attributes
    • 调整具有属性的实体之间的匹配的方法和装置
    • US6144964A
    • 2000-11-07
    • US10825
    • 1998-01-22
    • John S. BreeseCarl M. Kadie
    • John S. BreeseCarl M. Kadie
    • G06F17/30
    • G06F17/30867Y10S707/99936
    • Matching (e.g., via correlation or similarity process) entities having attributes, some of which have associated values. The values of the attributes may be adjusted based on number of entities that have values for a particular attribute so that the values decrease as the number increases. The attributes of the entities may be harmonized and provided with default values so that entities being matched have common attributes defined by the union of the attributes of the entities being matched. The attributes of the entities may be expanded and provided with default values so that the entities being matched have attributes that neither had originally. Match values may be normalized to provide a weight value which may be used to predict an attribute value of a new entity based on known attribute values of known entities. The weight values may be tuned such that relatively high weights are amplified and relatively low weights are suppressed.
    • 具有属性(例如,经由相关或相似性处理)匹配(其中一些具有相关联的值)。 可以基于具有特定属性的值的实体的数量来调整属性的值,使得值随着数量的增加而减小。 实体的属性可以被协调并且具有默认值,使得被匹配的实体具有由被匹配的实体的属性的并集定义的共同属性。 可以扩展实体的属性并提供默认值,使得匹配的实体具有原始的属性。 匹配值可以被归一化以提供可以用于基于已知实体的已知属性值来预测新实体的属性值的权重值。 可以调整权重值,使得相对较高的权重被放大并且相对较低的权重被抑制。