会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Plasma extraction microcavity plasma device and method
    • 等离子体提取微腔等离子体装置及方法
    • US07482750B2
    • 2009-01-27
    • US11344514
    • 2006-01-31
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J17/49
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes of the microcavity plasma device, and a probe electrode proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric, and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间限制的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激励电极之间的电位激发,并且靠近微腔的探针电极保持在电极之一的电位,从微腔等离子体装置中提取等离子体。 在优选实施例中,微腔等离子体装置的激发电极通过电介质与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体,然后等离子体被探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 13. 发明申请
    • Plasma extraction microcavity plasma device and method
    • 等离子体提取微腔等离子体装置及方法
    • US20070108910A1
    • 2007-05-17
    • US11344514
    • 2006-01-31
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J61/04
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes of the microcavity plasma device, and a probe electrode proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric, and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间限制的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激励电极之间的电位激发,并且靠近微腔的探针电极保持在电极之一的电位,从微腔等离子体装置提取等离子体。 在优选实施例中,微腔等离子体装置的激发电极通过电介质与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体,然后等离子体被探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 14. 发明授权
    • Microdischarge photodetectors
    • 微放电光电探测器
    • US06828730B2
    • 2004-12-07
    • US10306632
    • 2002-11-27
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J4000
    • H01J47/00H01J17/40
    • A microdischarge photodetector has a photocathode, an insulator and an anode. A cavity of limited size is disposed in the insulator and filled with gas. A voltage applied between the photocathode and the anode produces a plasma. Light incident on the photocathode having photon energies larger than about the work function produces photoelectrons are ejected from the photocathode and accelerated by the plasma electric field. The incident light is detected by detecting an increase in the plasma current or light emission from the plasma. The cavity may be flat or tapered and is designed to optimize detector performance.
    • 微放电光电检测器具有光电阴极,绝缘体和阳极。 有限尺寸的空腔设置在绝缘体中并充满气体。 施加在光电阴极和阳极之间的电压产生等离子体。 入射到具有大于工作功能的光子能量的光电子的光产生光电子从光电阴极喷出并被等离子体电场加速。 通过检测等离子体电流的增加或来自等离子体的发光来检测入射光。 空腔可以是平坦的或锥形的,并且被设计成优化检测器的性能。
    • 17. 发明申请
    • MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    • 具有微波增益介质的MICROCHANNEL激光
    • US20100296978A1
    • 2010-11-25
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S5/20H01S5/187B01J19/08
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。