会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    • 埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法
    • US20080185579A1
    • 2008-08-07
    • US11880698
    • 2007-07-24
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01L29/10H01L21/00
    • H01J11/18G09F9/313
    • A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 12. 发明授权
    • Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    • 埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法
    • US08004017B2
    • 2011-08-23
    • US11880698
    • 2007-07-24
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01J17/04H01J17/49
    • H01J11/18G09F9/313
    • A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 14. 发明授权
    • Microchannel laser having microplasma gain media
    • 具有微质增益介质的微通道激光器
    • US08442091B2
    • 2013-05-14
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S3/091
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 15. 发明授权
    • Method of making arrays of thin sheet microdischarge devices
    • 制备薄片微放电器件阵列的方法
    • US08221179B2
    • 2012-07-17
    • US11981412
    • 2007-10-31
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J17/49
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • The cavity 102 defines an empty volume formed in the insulator 108 has its walls defined by the insulator 108 and may extend through either (or both) the first electrode 106 or the second electrode 104, in which case the first electrode and/or second electrode also define the walls of the cavity 102. The cavity 102 is preferably cylindrical and has a diameter of 0.1 μm-1 mm. More preferably, the diameter ranges from 0.1 μm-500 μm, 1 μm-100 μm, or 100 μm-500 μm. The cavity 102 will be filled with a gas that contacts the cavity walls, fills the entire cavity 102 and is selected for its breakdown voltage or light emission properties at breakdown. Light is produced when the voltage difference between the first electrode 106 and the second electrode 104 creates an electric field sufficiently large to electrically break down the gas (nominally about 104 V-cm). This light escapes from the microcavity 102 through at least one end of the cavity 102.
    • 空腔102限定在绝缘体108中形成的空的体积具有由绝缘体108限定的壁,并且可延伸穿过第一电极106或第二电极104(或两者)中的一个或两者,在这种情况下,第一电极和/或第二电极 还限定空腔102的壁。空腔102优选是圆柱形的并且具有0.1μm-1mm的直径。 更优选的是,直径为0.1μm〜500μm,1μm〜100μm或100μm〜500μm。 空腔102将填充有与空腔壁接触的气体,填充整个空腔102,并且在击穿时选择其击穿电压或发光特性。 当第一电极106和第二电极104之间的电压差产生足够大的电场以电气分解气体(标称约为104V-cm)时产生光。 该光通过空腔102的至少一端从微腔102逸出。
    • 16. 发明授权
    • Plasma extraction microcavity plasma device and method
    • 等离子体提取微腔等离子体装置及方法
    • US07482750B2
    • 2009-01-27
    • US11344514
    • 2006-01-31
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J17/49
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes of the microcavity plasma device, and a probe electrode proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric, and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间限制的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激励电极之间的电位激发,并且靠近微腔的探针电极保持在电极之一的电位,从微腔等离子体装置中提取等离子体。 在优选实施例中,微腔等离子体装置的激发电极通过电介质与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体,然后等离子体被探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 18. 发明申请
    • Plasma extraction microcavity plasma device and method
    • 等离子体提取微腔等离子体装置及方法
    • US20070108910A1
    • 2007-05-17
    • US11344514
    • 2006-01-31
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J61/04
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes of the microcavity plasma device, and a probe electrode proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric, and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间限制的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激励电极之间的电位激发,并且靠近微腔的探针电极保持在电极之一的电位,从微腔等离子体装置提取等离子体。 在优选实施例中,微腔等离子体装置的激发电极通过电介质与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体,然后等离子体被探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 19. 发明授权
    • Microdischarge photodetectors
    • 微放电光电探测器
    • US06828730B2
    • 2004-12-07
    • US10306632
    • 2002-11-27
    • J. Gary EdenSung-Jin Park
    • J. Gary EdenSung-Jin Park
    • H01J4000
    • H01J47/00H01J17/40
    • A microdischarge photodetector has a photocathode, an insulator and an anode. A cavity of limited size is disposed in the insulator and filled with gas. A voltage applied between the photocathode and the anode produces a plasma. Light incident on the photocathode having photon energies larger than about the work function produces photoelectrons are ejected from the photocathode and accelerated by the plasma electric field. The incident light is detected by detecting an increase in the plasma current or light emission from the plasma. The cavity may be flat or tapered and is designed to optimize detector performance.
    • 微放电光电检测器具有光电阴极,绝缘体和阳极。 有限尺寸的空腔设置在绝缘体中并充满气体。 施加在光电阴极和阳极之间的电压产生等离子体。 入射到具有大于工作功能的光子能量的光电子的光产生光电子从光电阴极喷出并被等离子体电场加速。 通过检测等离子体电流的增加或来自等离子体的发光来检测入射光。 空腔可以是平坦的或锥形的,并且被设计成优化检测器的性能。