会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明授权
    • Predicting keyword monetization
    • 预测关键字营利
    • US08682839B2
    • 2014-03-25
    • US12131125
    • 2008-06-02
    • Hua LiZheng ChenJian Wang
    • Hua LiZheng ChenJian Wang
    • G06F17/30G06Q40/00
    • G06Q30/08G06Q30/02G06Q30/0256G06Q30/0267
    • Embodiments of the claimed subject matter provide a method and system for predicting bidding keyword monetization. The claimed subject matter provides a method and system with which the value of a keyword for the purpose of relevant online advertisement may be evaluated according to various metrics to determine a bidding landscape for use in advertising campaigns. The value of the keyword considers certain attributes related to the monetization of the keyword.One embodiment of the claimed subject matter is implemented as a method for predicting keyword monetization for one or more keyword-advertisement relationships. Historical data for the one or more keyword-advertisement relationships is referenced and used to generate a global model of the one or more keyword-advertisement relationship. The relationships are then evaluated according to a time-series analysis, which parses the data from the historical data and the global model to create predictions for the keyword monetization according to the keyword-advertisement relationships.
    • 所要求保护的主题的实施例提供了用于预测投标关键字货币化的方法和系统。 所要求保护的主题提供了一种方法和系统,其中可以根据各种度量来评估用于相关在线广告的关键字的价值,以确定用于广告活动的投标景观。 该关键字的值考虑与关键字获利相关的特定属性。 所要求保护的主题的一个实施例被实现为用于预测一个或多个关键字 - 广告关系的关键字获利的方法。 引用一个或多个关键字 - 广告关系的历史数据,并用于生成一个或多个关键字 - 广告关系的全局模型。 然后根据时间序列分析来评估关系,该时间序列分析从历史数据和全球模型中分析数据,以根据关键字 - 广告关系创建关键字营利的预测。
    • 15. 发明授权
    • Inferring opinions based on learned probabilities
    • 根据学习概率推论意见
    • US07761287B2
    • 2010-07-20
    • US11552057
    • 2006-10-23
    • Hua LiJian-Lai ZhouDongmei Zhang, legal representativeZheng ChenJian Wang
    • Hua LiJian-Lai ZhouZheng ChenJian Wang
    • G06F17/20G06Q30/00
    • G06F17/2715G06Q30/02G06Q30/0217G06Q30/0282
    • An opinion system infers the opinion of a sentence of a product review based on a probability that the sentence contains certain sequences of parts of speech that are commonly used to express an opinion as indicated by the training data and the probabilities of the training data. When provided with the sentence, the opinion system identifies possible sequences of parts of speech of the sentence that are commonly used to express an opinion and the probability that the sequence is the correct sequence for the sentence. For each sequence, the opinion system then retrieves a probability derived from the training data that the sequence contains an opinion word that expresses an opinion. The opinion system then retrieves a probability from the training data that the opinion words of the sentence are used to express an opinion. The opinion system then combines the probabilities to generate an overall probability that the sentence with that sequence expresses an opinion.
    • 意见系统根据该训练数据和训练数据概率所指示的句子包含通常用于表达意见的特定词汇序列的概率来推断产品评论句子的意见。 当提供句子时,意见系统识别通常用于表达意见的句子的部分语音的可能序列以及序列是句子的正确序列的概率。 对于每个序列,意见系统然后检索从训练数据得出的概率,该序列包含表达意见的意见词。 然后,意见系统从训练数据中检索出用于表达意见的句子意见词的概率。 然后,意见系统将概率组合以产生具有该序列的句子表达意见的总体概率。
    • 16. 发明申请
    • ADVERTISER MONETIZATION MODELING
    • 广告机构建模
    • US20090299831A1
    • 2009-12-03
    • US12131124
    • 2008-06-02
    • Hua LiZheng ChenJian Wang
    • Hua LiZheng ChenJian Wang
    • G06Q90/00
    • G06Q30/02G06Q10/025G06Q30/0207G06Q30/0277G06Q40/08
    • Embodiments of the claimed subject matter provide a method and system for modeling advertiser monetization. The claimed subject matter provides a method and system from which an advertisement may be evaluated according to various metrics to determine a quality relative to other advertisements. The relative quality considers the content of the advertisement, the performance of the advertisement and the history of the advertiser's bidding behavior.One embodiment of the claimed subject matter is implemented as a method for advertiser monetization modeling. One or more advertisements are received from one or more advertisers. The quality of the advertisement(s) is defined according to certain metrics, such as the quality of the content of the advertisement, the quality of the past and estimated future performance of the advertisement and the history of bidding behavior of the advertiser. After the respective quality of the advertisement(s) is determined, the advertisement(s) is ranked with other advertisements according to the determined quality.
    • 所要求保护的主题的实施例提供了用于对广告商获利进行建模的方法和系统。 所要求保护的主题提供了一种方法和系统,从该方法和系统可以根据各种度量来评估广告以确定相对于其他广告的质量。 相对质量考虑广告的内容,广告的表现以及广告商的投标行为的历史。 所要求保护的主题的一个实施例被实现为广告商获利建模的方法。 从一个或多个广告商接收一个或多个广告。 广告的质量根据广告内容的质量,过去的质量以及广告的未来预测表现以及广告主的投标行为的历史等某些指标来定义。 在确定了广告的相应质量之后,根据所确定的质量对广告进行其他广告的排序。
    • 19. 发明申请
    • INFERRING OPINIONS BASED ON LEARNED PROBABILITIES
    • 基于认知可行性的感染意见
    • US20080097758A1
    • 2008-04-24
    • US11552057
    • 2006-10-23
    • Hua LiJian-Lai ZhouZheng ChenJian WangDongmei Zhang
    • Hua LiJian-Lai ZhouZheng ChenJian WangDongmei Zhang
    • G10L15/00
    • G06F17/2715G06Q30/02G06Q30/0217G06Q30/0282
    • An opinion system infers the opinion of a sentence of a product review based on a probability that the sentence contains certain sequences of parts of speech that are commonly used to express an opinion as indicated by the training data and the probabilities of the training data. When provided with the sentence, the opinion system identifies possible sequences of parts of speech of the sentence that are commonly used to express an opinion and the probability that the sequence is the correct sequence for the sentence. For each sequence, the opinion system then retrieves a probability derived from the training data that the sequence contains an opinion word that expresses an opinion. The opinion system then retrieves a probability from the training data that the opinion words of the sentence are used to express an opinion. The opinion system then combines the probabilities to generate an overall probability that the sentence with that sequence expresses an opinion.
    • 意见系统根据该训练数据和训练数据概率所指示的句子包含通常用于表达意见的特定词汇序列的概率来推断产品评论的句子的意见。 当提供句子时,意见系统识别通常用于表达意见的句子的部分语音的可能序列以及序列是句子的正确序列的概率。 对于每个序列,意见系统然后检索从训练数据得出的概率,该序列包含表达意见的意见词。 然后,意见系统从训练数据中检索出用于表达意见的句子意见词的概率。 然后,意见系统将概率组合以产生具有该序列的句子表达意见的总体概率。