会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Fuel gas production system for fuel cells
    • 燃料电池燃气生产系统
    • US06656617B2
    • 2003-12-02
    • US09758387
    • 2001-01-12
    • Satoshi AoyamaHiromichi SatoToshihide NakataSatoshi Iguchi
    • Satoshi AoyamaHiromichi SatoToshihide NakataSatoshi Iguchi
    • H01M804
    • H01M8/2483C01B3/384C01B3/48C01B3/505C01B2203/0233C01B2203/0283C01B2203/041C01B2203/044C01B2203/047C01B2203/066C01B2203/1076H01M8/0258H01M8/0267H01M8/04223H01M8/04225H01M8/04268H01M8/0631H01M8/0662H01M8/0668H01M8/0687
    • The technique of the present invention enhances the separation efficiency and the production efficiency of hydrogen in a hydrogen production system for fuel cells, while reducing the size of the whole fuel gas production system. In the fuel gas production system of the present invention, a hydrocarbon compound is subjected to multi-step chemical processes including a reforming reaction, a shift reaction, and a CO oxidation to give a hydrogen-rich fuel gas. Gaseous hydrogen produced through the reforming reaction is separated by a hydrogen separation membrane having selective permeability to hydrogen. The residual gas after the separation of hydrogen has a low hydrogen partial pressure and undergoes the shift reaction at the accelerated rate. The hydrogen-rich processed gas obtained through the shift reaction and the CO oxidation joins with the separated hydrogen and is supplied to fuel cells. A purge gas for carrying out the hydrogen is introduced into a separation unit of hydrogen, in order to lower the hydrogen partial pressure and thereby enhance the separation efficiency of hydrogen. The residual gas after the separation of hydrogen undergoes combustion and is subsequently used as the purge gas
    • 本发明的技术提高了燃料电池的氢生产系统中的氢的分离效率和生产效率,同时减小了整个燃料气体生产系统的尺寸。 在本发明的燃料气体生产系统中,烃化合物进行包括重整反应,转移反应和CO氧化在内的多步化学处理,得到富氢燃料气体。 通过重整反应产生的气态氢气通过对氢具有选择性渗透性的氢分离膜分离。 氢分离后的残留气体具有低的氢分压,并以加速速率进行转化反应。 通过转移反应和CO氧化获得的富氢处理气体与分离的氢气连接并供应到燃料电池。 用于进行氢气的吹扫气体被引入到氢的分离单元中,以便降低氢气分压,从而提高氢的分离效率。 氢气分离后的残余气体经历燃烧,随后用作净化气体
    • 17. 发明申请
    • Membrane-Electrode Assembly and Fuel Cell
    • 膜 - 电极组件和燃料电池
    • US20070248872A1
    • 2007-10-25
    • US11659539
    • 2005-08-17
    • Satoshi AoyamaSatoshi IguchiMakoto Taniguchi
    • Satoshi AoyamaSatoshi IguchiMakoto Taniguchi
    • B01J21/18H01M4/00
    • C01B3/501C01B2203/0405H01M4/9033H01M4/9041H01M4/94H01M8/0232H01M8/0267H01M8/0297H01M8/241H01M8/2457H01M8/2483H01M2008/1293
    • An electrolyte layer (121) and a hydrogen-permeable metal layer (122) are fitted in a fitting portion (131) of a low thermal expansion member (130), and a cathode electrode (110) is provided on the electrolyte layer (121). Gas separators (100, 150) are provided such that a low thermal expansion member (130) is held between the gas separators (100, 150). Since the low thermal expansion member (130) is made of metal which has a thermal expansion coefficient lower than that of the hydrogen-permeable metal layer (122), thermal expansion of the hydrogen-permeable metal layer (122) can be suppressed. Accordingly, it is possible to reduce shear stress applied to an interface between the electrolyte layer (121) and the hydrogen-permeable metal layer (122) due to the thermal expansion. It is possible to suppress separation of the electrolyte layer (121) from the hydrogen-permeable metal layer (122) and occurrence of a crack in the electrolyte layer (121).
    • 电解质层(121)和透氢性金属层(122)嵌合在低热膨胀构件(130)的嵌合部(131)中,阴极电极(110)设置在电解质层 )。 气体分离器(100,150)被设置成使得低热膨胀构件(130)保持在气体分离器(100,150)之间。 由于低热膨胀构件(130)由热膨胀系数低于透氢性金属层(122)的热膨胀系数的金属制成,所以可以抑制透氢性金属层(122)的热膨胀。 因此,由于热膨胀,可以减少施加到电解质层(121)和氢可渗透金属层(122)之间的界面的剪切应力。 可以抑制电解质层(121)与透氢性金属层(122)的分离,并且在电解质层(121)中产生裂纹。
    • 20. 发明授权
    • Membrane-electrode assembly and fuel cell
    • 膜 - 电极组件和燃料电池
    • US07718303B2
    • 2010-05-18
    • US11659539
    • 2005-08-17
    • Satoshi AoyamaSatoshi IguchiMakoto Taniguchi
    • Satoshi AoyamaSatoshi IguchiMakoto Taniguchi
    • H01M4/00
    • C01B3/501C01B2203/0405H01M4/9033H01M4/9041H01M4/94H01M8/0232H01M8/0267H01M8/0297H01M8/241H01M8/2457H01M8/2483H01M2008/1293
    • An electrolyte layer (121) and a hydrogen-permeable metal layer (122) are fitted in a fitting portion (131) of a low thermal expansion member (130), and a cathode electrode (110) is provided on the electrolyte layer (121). Gas separators (100, 150) are provided such that a low thermal expansion member (130) is held between the gas separators (100, 150). Since the low thermal expansion member (130) is made of metal which has a thermal expansion coefficient lower than that of the hydrogen-permeable metal layer (122), thermal expansion of the hydrogen-permeable metal layer (122) can be suppressed. Accordingly, it is possible to reduce shear stress applied to an interface between the electrolyte layer (121) and the hydrogen-permeable metal layer (122) due to the thermal expansion. It is possible to suppress separation of the electrolyte layer (121) from the hydrogen-permeable metal layer (122) and occurrence of a crack in the electrolyte layer (121).
    • 电解质层(121)和透氢性金属层(122)嵌合在低热膨胀部件(130)的嵌合部(131)中,阴极电极(110)设置在电解质层 )。 气体分离器(100,150)被设置成使得低热膨胀构件(130)保持在气体分离器(100,150)之间。 由于低热膨胀构件(130)由热膨胀系数低于透氢性金属层(122)的热膨胀系数的金属制成,所以可以抑制透氢性金属层(122)的热膨胀。 因此,由于热膨胀,可以减少施加到电解质层(121)和氢可渗透金属层(122)之间的界面的剪切应力。 可以抑制电解质层(121)与透氢性金属层(122)的分离,并且在电解质层(121)中产生裂纹。