会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Methods and apparatus for reduction of high dimensional data
    • 减少高维数据的方法和装置
    • US07236638B2
    • 2007-06-26
    • US10208523
    • 2002-07-30
    • Charu C. Aggarwal
    • Charu C. Aggarwal
    • G06K9/36G06K9/46
    • G06K9/6232Y10S707/99931
    • Data compression techniques particularly applicable to high dimensional data. The invention uses a hierarchical partitioning approach in conjunction with a subspace sampling methodology which is sensitive to a subject data set. The dual nature of this hierarchical partitioning and subspace sampling approach makes the overall data compression process very effective. While the data compression process provides a much more compact representation than traditional dimensionality reduction techniques, the process also provides hard bounds on the error of the approximation. Also, the data compression process of the invention realizes a compression factor that improves with increasing database size.
    • 数据压缩技术特别适用于高维数据。 本发明结合对主题数据集敏感的子空间抽样方法使用分层划分方法。 这种分层分区和子空间采样方法的双重性使得整体数据压缩过程非常有效。 虽然数据压缩过程提供比传统降维技术更紧凑的表示,但是该过程也提供了对近似误差的硬限制。 此外,本发明的数据压缩处理实现了随着数据库大小的增加而改善的压缩因子。
    • 16. 发明授权
    • Dimensional reduction mechanisms for representing massive communication network graphs for structural queries
    • 用于表示结构性查询的大量通信网络图的尺寸缩减机制
    • US08659604B2
    • 2014-02-25
    • US12568719
    • 2009-09-29
    • Charu C. Aggarwal
    • Charu C. Aggarwal
    • G06T11/20
    • G06F17/30572G06T11/206
    • Mechanisms are provided for transforming an original graph data set into a representative form having a smaller number of dimensions that the original graph data set. The mechanisms generate a graph transformation basis structure based on an input graph data structure. The mechanisms further transform an original graph data set based on an intersection of the graph transformation basis structure and the input graph data structure to thereby generate a transformed graph data set data structure. The transformed graph data set data structure has a reduced dimensionality from that of the input graph data structure but represents characteristics of the original graph data set. Moreover, the mechanisms perform an application specific operation on the transformed graph data set data structure to generate an output of a closest similarity record in the transformed graph data set to a target component.
    • 提供了用于将原始图形数据集变换为具有较小维数原始图形数据集的代表形式的机制。 该机制基于输入图形数据结构生成图形变换基础结构。 这些机制基于图形变换基础结构和输入图形数据结构的交点进一步变换原始图形数据集,从而生成变换图形数据集数据结构。 变换后的图形数据集数据结构具有与输入图形数据结构的维度相当的维度,但表示原始图形数据集的特征。 此外,机构对变换的图形数据集数据结构执行应用程序特定的操作,以在转换的图形数据集中产生最接近的相似度记录的输出到目标分量。
    • 17. 发明授权
    • System and method for distributed privacy preserving data mining
    • 分布式隐私保护数据挖掘的系统和方法
    • US08650213B2
    • 2014-02-11
    • US11752708
    • 2007-05-23
    • Charu C. AggarwalPhilip Shi-Lung Yu
    • Charu C. AggarwalPhilip Shi-Lung Yu
    • G06F7/00
    • G06F17/30539G06F21/6245G06F2216/03Y10S707/99931Y10S707/99932
    • Distributed privacy preserving data mining techniques are provided. A first entity of a plurality of entities in a distributed computing environment exchanges summary information with a second entity of the plurality of entities via a privacy-preserving data sharing protocol such that the privacy of the summary information is preserved, the summary information associated with an entity relating to data stored at the entity. The first entity may then mine data based on at least the summary information obtained from the second entity via the privacy-preserving data sharing protocol. The first entity may obtain, from the second entity via the privacy-preserving data sharing protocol, information relating to the number of transactions in which a particular itemset occurs and/or information relating to the number of transactions in which a particular rule is satisfied.
    • 提供分布式隐私保护数据挖掘技术。 分布式计算环境中的多个实体的第一实体通过隐私保护数据共享协议与多个实体的第二实体交换摘要信息,使得保留摘要信息的隐私,与 与实体存储的数据相关的实体。 然后,第一实体可以至少基于通过隐私保护数据共享协议从第二实体获得的摘要信息来挖掘数据。 第一实体可以通过隐私保护数据共享协议从第二实体获得与特定项目集出现的交易数量有关的信息和/或与其中满足特定规则的交易数量有关的信息。
    • 18. 发明申请
    • Similarity Searching in Large Disk-Based Networks
    • 在大型基于磁盘的网络中进行相似性搜索
    • US20120269200A1
    • 2012-10-25
    • US13091244
    • 2011-04-21
    • Charu C. Aggarwal
    • Charu C. Aggarwal
    • H04L12/56
    • H04L47/00
    • Techniques for determining a shortest path in a disk-based network are provided. The techniques include creating a compressed representation of an underlying disk resident network graph, wherein creating a compressed representation of an underlying disk resident network graph comprises determining one or more dense regions in the disk resident graph and compacting the one or more dense regions into one or more compressed nodes, associating one or more node penalties with the one or more compressed nodes, wherein the one or more node penalties reflect a distance of a sub-path within a compressed node, and performing a query on the underlying disk resident network graph using the compressed representation and one or more node penalties to determine a shortest path in the disk-based network to reduce the number of accesses to a physical disk.
    • 提供用于确定基于磁盘的网络中的最短路径的技术。 所述技术包括创建底层磁盘驻留网络图的压缩表示,其中创建底层磁盘驻留网络图的压缩表示包括确定磁盘驻留图中的一个或多个密集区域并将一个或多个密集区域压缩为一个或多个密集区域 更多的压缩节点将一个或多个节点惩罚与一个或多个压缩节点相关联,其中所述一个或多个节点惩罚反映了压缩节点内的子路径的距离,并且使用 压缩表示和一个或多个节点惩罚,以确定基于磁盘的网络中的最短路径,以减少对物理磁盘的访问次数。
    • 19. 发明申请
    • System and Method for Finding Important Nodes in a Network
    • 在网络中查找重要节点的系统和方法
    • US20120218908A1
    • 2012-08-30
    • US13036083
    • 2011-02-28
    • Charu C. Aggarwal
    • Charu C. Aggarwal
    • H04L12/26
    • H04L51/32H04L51/14
    • Techniques for optimizing steady state flow of a network are provided. The techniques include determining a first set of two or more nodes in a network, computing a steady-state flow probability of the first set of two or more nodes, and iteratively interchanging nodes from a second set of two or more nodes into the first set of two or more nodes to determine an optimum total steady state flow of the network, wherein determining an optimum total steady-state flow of the network comprises iteratively interchanging nodes until no additional improvements in steady-state flow over the computed steady-state flow probability can be obtained.
    • 提供了优化网络稳态流的技术。 这些技术包括确定网络中的两个或更多个节点的第一组,计算第二组两个或多个节点的稳态流概率,以及将节点从第二组两个或多个节点迭代地交换到第一组中 以确定网络的最佳总稳态流,其中确定网络的最佳总稳态流包括迭代交换节点,直到在所计算的稳态流概率上没有对稳态流的额外改进 可以获得。
    • 20. 发明申请
    • Dimensional Reduction Mechanisms for Representing Massive Communication Network Graphs for Structural Queries
    • 用于表示大量通信网络图的结构查询的维度缩减机制
    • US20110074786A1
    • 2011-03-31
    • US12568719
    • 2009-09-29
    • Charu C. Aggarwal
    • Charu C. Aggarwal
    • G06T11/20
    • G06F17/30572G06T11/206
    • Mechanisms are provided for transforming an original graph data set into a representative form having a smaller number of dimensions that the original graph data set. The mechanisms generate a graph transformation basis structure based on an input graph data structure. The mechanisms further transform an original graph data set based on an intersection of the graph transformation basis structure and the input graph data structure to thereby generate a transformed graph data set data structure. The transformed graph data set data structure has a reduced dimensionality from that of the input graph data structure but represents characteristics of the original graph data set. Moreover, the mechanisms perform an application specific operation on the transformed graph data set data structure to generate an output of a closest similarity record in the transformed graph data set to a target component.
    • 提供了用于将原始图形数据集变换为具有较小维数原始图形数据集的代表形式的机制。 该机制基于输入图形数据结构生成图形变换基础结构。 这些机制基于图形变换基础结构和输入图形数据结构的交点进一步变换原始图形数据集,从而生成变换图形数据集数据结构。 变换后的图形数据集数据结构具有与输入图形数据结构的维度相当的维度,但表示原始图形数据集的特征。 此外,机构对变换的图形数据集数据结构执行应用程序特定的操作,以在转换的图形数据集中产生最接近的相似度记录的输出到目标分量。