会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明专利
    • Method for measuring distortion shape of tubular ring, and program
    • 用于测量管状变形形状的方法和程序
    • JP2007147498A
    • 2007-06-14
    • JP2005343800
    • 2005-11-29
    • Kajima Corp鹿島建設株式会社
    • IMAI MICHIOMIURA SATORUKURONUMA IZURUIGARASHI HIROMASA
    • G01B11/16E21D9/06E21D11/40G01C15/00
    • PROBLEM TO BE SOLVED: To provide a method for measuring the distortion shape of a tubular ring, and to provide a program capable of being applied even under the conditions where obstacles to photographing exists. SOLUTION: A group of measurement visual targets Tk, at a prescribed angular position θk, is attached to the inner circumferential surface of a tubular ring A, having a prescribed inner circumferential length G along an intersection L intersecting with an orthogonal cross-section F of the ring central axis C, and a group of images Ig where the measurement visual target Tk is photographed from different positions and attitudes, depending on a movable imaging machine 10 inside the ring is photographed. The photographic position and the attitude of each image Ig are detected by the two-dimensional coordinates of the image of the measurement visual target Tk, in each image Ig and the prescribed angular position coordinates of each measurement visual target Tk. The three-dimensional coordinates (X, Y, Z) of each measurement visual target Tk are calculated by bundle adjustment, on the basis of the two-dimensional coordinates of the image of the measurement visual target Tk in each image Ig, the prescribed angular position coordinates of each measurement visual target Tk, and the photographic position and the attitude of each image Ig. Furthermore, the distortion shape of the tubular ring A is measured by corrected three-dimensional coordinates (Xs, Ys, Zs), that are corrected on the basis of the reduced scale S of the perimeter Q of a polygon, that connects each three-dimensional coordinates (X, Y, Z) and of the prescribed inner circumferential length G. COPYRIGHT: (C)2007,JPO&INPIT
    • 要解决的问题:提供一种用于测量管状环的变形形状的方法,并且提供即使在存在拍摄障碍物的条件下也能够应用的程序。 解决方案:在规定的角度位置θk处的一组测量视觉目标Tk沿着与正交截面交叉的交点L具有规定的内周长度G的管状环A的内周面, 拍摄环形中心轴线C的截面F以及根据环内的移动成像机10从不同位置和姿态拍摄测量视觉目标Tk的一组图像Ig。 每个图像Ig中的测量视觉目标Tk的图像的二维坐标和每个测量视觉目标Tk的规定的角位置坐标来检测每个图像Ig的拍摄位置和姿态。 基于每个图像Ig中的测量视觉目标Tk的图像的二维坐标,通过束调整来计算每个测量视觉目标Tk的三维坐标(X,Y,Z) 每个测量视觉目标Tk的位置坐标,以及每个图像Ig的拍摄位置和姿态。 此外,通过校正的三维坐标(Xs,Ys,Zs)测量管状环A的变形形状,该三维坐标基于多边形的周长Q的缩小比例S进行校正, 尺寸坐标(X,Y,Z)和规定的内圆周长度G.版权所有(C)2007,JPO&INPIT
    • 12. 发明专利
    • Embrakation loading volume measurement method and apparatus
    • EMBRAKATION加载量测量方法和装置
    • JP2003035527A
    • 2003-02-07
    • JP2001221669
    • 2001-07-23
    • Kajima Corp鹿島建設株式会社
    • KURONUMA IZURUMIURA SATORUIMAI MICHIO
    • G01B11/245G01B11/24
    • PROBLEM TO BE SOLVED: To provide an embarkation loading volume measurement method and apparatus which can maintain precise measurement also under an environment where a mechanical vibration, etc., produces.
      SOLUTION: A pair of stereo image apparatuses 10a, 10b are supported downwardly above a passage 5 where an upper-end-opened carrying vessel 2 with a loading surface in a known three-dimensional shape runs, and a target 7 is fixed to a plurality of known locations distributed across the visual field superposition region of a pair of image apparatuses 10a, 10b. When there is no carrying vessel 2 below the image apparatuses, the location and direction of a pair of image apparatuses 10a, 10b are standardized from the two-dimensional coordinates of the image of each target 7 on a couple of stereo images IgL
      0 , IgR
      0 imaged by a pair of image apparatuses 10a, 10b. When the carrying vessel 2 below the image apparatuses passes, the three-dimensional coordinates of the loading surface edge 4 of the carrying vessel 2 and the three-dimensional shape of surface of the inside embarkation loading 1 are detected from the two-dimensional coordinates of each point on a pair of stereo images IgL, IgR of the carrying vessel 2 imaged by a couple of image apparatuses 10a, 10b, and the location and direction standardized. Thus, the volume of the embarkation loading 1 is computed from the known three-dimensional shape of the loading surface 3 and the three-dimensional shape of the surface of the embarkation loading 1 positioned to the three-dimensional coordinates of the loading surface edge 4.
      COPYRIGHT: (C)2003,JPO
    • 要解决的问题:提供一种在机械振动等产生的环境下也能够保持精确测量的登乘装载体积测量方法和装置。 解决方案:一对立体图像装置10a,10b向下支撑在通道5的上方,在具有已知三维形状的装载表面的上端开启的运载容器2运行,并且目标7固定到多个 分布在一对图像装置10a,10b的视野叠加区域上的已知位置。 当在图像装置下方没有承载船2时,一对图像装置10a,10b的位置和方向从两个立体图像IgL0,IgR0成像的每个目标7的图像的二维坐标标准化 通过一对图像装置10a,10b。 当图像装置下方的运送容器2通过时,从承载容器2的装载表面边缘4的三维坐标和内部登乘装载1的表面的三维形状的二维坐标 由一对图像装置10a,10b成像的运送容器2的一对立体图像IgL,IgR上的每个点,以及标准化的位置和方向。 因此,从装载面3的已知三维形状和位于装载面边缘4的三维坐标的登乘载荷1的表面的三维形状计算登机载荷1的体积 。
    • 14. 发明专利
    • Optical fiber sensor and measuring device
    • 光纤传感器和测量装置
    • JP2009222397A
    • 2009-10-01
    • JP2008064070
    • 2008-03-13
    • Anritsu CorpKajima Corpアンリツ株式会社鹿島建設株式会社
    • NAKAMURA KENICHINAKO YASUHIKONAKANO TATSUJIIMAI MICHIOMIURA SATORU
    • G01B11/16G01D5/353G02B6/02
    • PROBLEM TO BE SOLVED: To take out only distortion by eliminating the effect of a temperature change generated in an FBG sensor. SOLUTION: A fiber support 21 of an optical fiber sensor 20 is erected so that a pair of arm sections 25, 26 opposes each other via hinges 23, 24 at one surface side of a base 22 fixed to a measurement target; the middle positions of the arm sections 25, 26 are connected by a connection section 29 via hinges 27, 28; the fiber support is formed integrally by a material having an expansion coefficient equal to that of the measurement target; and the arm sections 25, 26 are tilted in opposite directions mutually by receiving force for stretching the base 22 from the measurement target. Both the ends of the optical fiber 1 for sensors having a grating section 1a are fixed with tension between positions at one end side separated from the connection section 29 of the arm sections 25, 26 by a prescribed distance; and an optical fiber 1' for sensors having the same characteristics as those of the optical fiber is fixed being balanced between positions at the other end side separated from the connection section 29 of the arm sections 25, 26 by a prescribed distance. COPYRIGHT: (C)2010,JPO&INPIT
    • 要解决的问题:通过消除FBG传感器中产生的温度变化的影响,仅消除失真。 解决方案:光纤传感器20的光纤支架21竖立,使得一对臂部分25,26在固定在测量对象物上的基座22的一个表面侧通过铰链23,24彼此相对; 臂部分25,26的中间位置通过连接部分29通过铰链27,28连接; 纤维支撑体由膨胀系数等于测量对象的材料一体地形成; 并且臂部25,26通过接受用于从测量对象物拉伸基部22的力而在相反的方向上倾斜。 用于具有光栅部分1a的传感器的光纤1的两端在与臂部分25,26的连接部分29分离的一端侧的位置之间具有张力固定预定距离; 并且与具有与光纤相同特性的传感器的光纤1'固定在与臂部25,26的连接部29分离的另一端侧的位置之间平坦化规定距离。 版权所有(C)2010,JPO&INPIT
    • 15. 发明专利
    • Method and system for evaluating stability of wave dissipating work
    • 用于评估波浪消除工作稳定性的方法和系统
    • JP2006057263A
    • 2006-03-02
    • JP2004237953
    • 2004-08-18
    • Kajima Corp鹿島建設株式会社
    • AKIYAMA SHINGOFUKUYAMA TAKAKOIKETANI TAKESHIIMAI MICHIO
    • E02B3/14G01B11/16
    • PROBLEM TO BE SOLVED: To provide a method and a system for evaluating safety, which enable the accurate measurement of the amount of deformation of all wave dissipating works.
      SOLUTION: The wave dissipating works 1 are constructed by heaping up a group of wave dissipating concrete blocks 2 to which mutually identifiable measurement targets 3 are affixed, and mutually identifiable reference targets 7 are each fixed in reference positions Q of at least three known three-dimensional coordinates, considered immovable, near the wave dissipating works 1. A group of images including the measurement target 3 and the reference target 7 is obtained from different imaging positions O facing the wave dissipating works 1; the three-dimensional coordinate of each imaging position O with respect to the reference position 7 and the three-dimensional coordinate of the reference position 7, and an imaging attitude and the three-dimensional coordinate of each measurement target 3 are measured from a two-dimensional coordinate of each target image among the images and the known three-dimensional coordinate in the reference position 7 by an image measuring method; and a three-dimensional shape K of the wave dissipating works 1 is computed from the three-dimensional coordinate of each measurement target 3. The amount of the deformation of the wave dissipating works 1 by the external force is computed from the three-dimensional shape K of the wave dissipating works 1 before and after the action of an external force on the wave dissipating works 1.
      COPYRIGHT: (C)2006,JPO&NCIPI
    • 要解决的问题:提供一种用于评估安全性的方法和系统,其能够精确测量所有波浪消散工程的变形量。 解决方案:波浪消散工程1是通过堆叠一组波浪消散混凝土块2构成的,相互识别的测量目标3被固定在其上,相互可识别的参考目标7各自固定在至少三个的参考位置Q 在波浪耗散工作1附近被认为是不可移动的已知的三维坐标1.从面向波浪耗散工件1的不同成像位置O获得包括测量目标3和参考目标7的一组图像; 每个成像位置O相对于基准位置7的三维坐标和基准位置7的三维坐标,以及每个测量对象3的成像姿态和三维坐标, 通过图像测量方法在图像中的每个目标图像的尺寸坐标和参考位置7中的已知三维坐标; 并根据各测量对象3的三维坐标来计算波浪耗散工件1的三维形状K.由外力引起的波浪耗散工件1的变形量由三维形状 波浪耗散工作1的波动消除作用之前和之后的外力K的作用1.版权所有(C)2006年,JPO&NCIPI
    • 16. 发明专利
    • Method and system for diagnosing structure by means of optical fiber
    • 通过光纤诊断结构的方法和系统
    • JP2005257570A
    • 2005-09-22
    • JP2004071756
    • 2004-03-12
    • Kajima Corp鹿島建設株式会社
    • IMAI MICHIOMIURA SATORUMIYAMOTO YUJISAKO YUJI
    • E21D11/00G01B11/16G01L1/24G01M11/00G01M99/00G01M19/00
    • PROBLEM TO BE SOLVED: To provide a method and system for diagnosing a structure by means of optical fibers while renewing a continuous monitoring part on strain history.
      SOLUTION: A relation 3101 between strain and stress, and a relation 3102 between repetition of strain and fatigue deterioration, are known on the structure. The optical fibers 7 and 8 are attached to the structure along its diagnosing object member to measure initial strain 3201 of the whole of the object member by means of the optical fibers 7 and 8. The strain history 3401 of a specific part on the object member is continuously monitored by means of the optical fibers 7 and 8. The soundness of the specific part is diagnosed from the initial strain 3201, the strain history 3401, and the relations 3101 and 3102. Strain distribution 3701 of the whole of the object member is intermittently measured by the optical fibers 7 and 8. From the initial strain 3201, the strain distribution 3701, and the relations 3101 and 3102, the soundness of the whole of the member is diagnosed while the continuous monitoring part on the object member is renewed based on the result of the diagnosis.
      COPYRIGHT: (C)2005,JPO&NCIPI
    • 要解决的问题:提供一种用于通过光纤诊断结构的方法和系统,同时更新应变历史上的连续监测部分。 解决方案:应变和应力之间的关系3101以及应变和疲劳退化的重复之间的关系3102在结构上是已知的。 光纤7和8沿着其诊断对象构件附接到结构,以通过光纤7和8测量整个对象构件的初始应变3201.目标构件上的特定部分的应变历史3401 通过光纤7和8连续监视特定部分的健壮性。从初始应变3201,应变历史3401以及关系3101和3102诊断特定部分的健壮性。整个对象部件的应变分布3701是 通过光纤7和8间歇地测量。从初始应变3201,应变分布3701以及关系3101和3102,在对象构件上的连续监视部分被更新的基础上诊断整个构件的健全性 对诊断结果。 版权所有(C)2005,JPO&NCIPI
    • 17. 发明专利
    • 締固め状況管理システム、締固め状況管理方法
    • 国家管理体系和国家管理制度
    • JP2014198991A
    • 2014-10-23
    • JP2014044276
    • 2014-03-06
    • 鹿島建設株式会社Kajima Corp
    • IMAI MICHIOKOGURE YUICHIYANAI SHUJI
    • E04G21/06
    • 【課題】バイブレータによる締固めが適切に行われているかを簡易に把握できコンクリートの施工品質向上に資することのできる締固め状況管理システム等を提供する。【解決手段】締固め状況管理システム1では、バイブレータ2の筒先2aからバイブレータ2に沿って設けられ固定点11aまで連続する光ファイバセンサ11を用い、センサの変形に基づいてバイブレータ2の筒先2aのコンクリート3内での位置情報を検出する。そして、締固め状況管理装置15が、コンクリート3の打設範囲を分割した立体格子111の領域において、バイブレータ2がオンの状態で筒先2aが所定時間滞在していれば、その立体格子111に対応する領域でコンクリート3が十分に締固められたと判定し、立体格子111の色を変化させて表示する。【選択図】図1
    • 要解决的问题:提供一种能够容易地掌握是否适当地执行振动器的夯实的捣固状态管理系统等,并有助于提高混凝土的施工质量。解决方案:捣固状态管理系统1使用光纤传感器 11,其从振动器2的气缸前端2a沿着振动器2设置成与定影点11a连续,并且从传感器的变形中检测混凝土3中的振动器2的气缸前端2a上的位置信息。 捣固状态管理装置15确定混凝土3在对应于三维格子111的区域中被充分地夯实,该三维网格111通过在接通状态下的振动器2连续地具有气缸前端2a时分割混凝土3的安装范围而获得 三维格子111的区域预定时间,并改变并显示三维格子111的颜色。
    • 19. 发明专利
    • POSITION MEASURING SYSTEM FOR STRUCTURE UNDER CONSTRUCTION
    • JPH11337335A
    • 1999-12-10
    • JP14463598
    • 1998-05-26
    • KAJIMA CORP
    • MIURA SATORUIMAI MICHIO
    • G01C15/00G01B11/00
    • PROBLEM TO BE SOLVED: To provide a system for measuring the position and displacement of a structure under construction, without needing the calibration. SOLUTION: A light emitter 1 sends a set of a plurality of vertical laser beams 11a, 11b, 11c being in a fixed mutual relation from a reference position, a target board 6 and camera 7 are mounted on a structure to form a light receiver 2, the camera 7 photographs the incident positions 16a, 16b, 16c of the plurality of vertical laser beams on the target board 6, the obtd. pictures are sent to a computer 9 in a processor 3, the fixed inter-relation of the plurality of vertical laser beams, incident positions on the pictures and their removes are compared to obtain the position and inclination of the structure to the reference position, the rotation angle displacement of the structure is measured, based on measured values of the incident position changes of the plurality of vertical laser beams on the light receiver, the magnitude and direction of the structure displacement are measured and the inclination of the structure is measured as well.
    • 20. 发明专利
    • REAL-TIME DYNAMIC SURVEY SYSTEM UTILIZING GPS
    • JPH11183587A
    • 1999-07-09
    • JP34623597
    • 1997-12-16
    • KAJIMA CORP
    • MIURA SATORUHIROSE MOTOHISAIMAI MICHIOAONO TAKASHI
    • G01C15/00G01S19/07G01S5/14
    • PROBLEM TO BE SOLVED: To provide an accurate, real-time dynamic survey system. SOLUTION: A first fixed antenna 7 and a second fixed antenna 9 are fixed to different, known coordinates O and P. Measurement coordinates P' of the second fixed antenna 9 are calculated by a coordinates calculation means 6 according to both reception GPS signals 30 and 33 of the first and second fixed antennas 7 and 9 and the known coordinates O of the first fixed antenna 7, and a deviation ΔP between the measurement coordinates P' of the second fixed antenna 9, and the known coordinates P of the second fixed antenna 9 is calculated by a deviation detection means 17. The reception GPS signal 30 of the first fixed antenna 7 and a signal 32 with the deviation of ΔP are transmitted toward a traveling body 2 from transmission devices 10 and 15 and are received by reception devices 11 and 16 of the traveling body 2. An approximation means 5 of the traveling body 2 calculates approximate coordinates 1' of a traveling antenna 8 based on a reception GPS signal 34 of the traveling antenna 8 and the reception GPS signal 30 from a transmission device 10, and a coordinates correction means 18 corrects the approximate coordinates R1' according to the deviation ΔP from the transmission device 15.