会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • METHODS AND APPARATUSES FOR COOLING OPTICAL FIBERS
    • 冷却光纤的方法和装置
    • US20140096565A1
    • 2014-04-10
    • US13644578
    • 2012-10-04
    • Steven Joseph GregorskiJohn Christopher ThomasKevin Lee Wasson
    • Steven Joseph GregorskiJohn Christopher ThomasKevin Lee Wasson
    • C03B37/10
    • C03B37/02718Y02P40/57
    • Methods and apparatuses for cooling optical fibers are disclosed. In one embodiment, In some embodiments, a cooling apparatus for cooling an optical fiber in a production process includes a channel defined by at least one sidewall assembly and a plurality of interior cavities positioned along the interior of the sidewall assembly. The interior cavities include at least one plenum, a first plurality of fluid supply cavities in fluid communication with the at least one plenum, and a second plurality of fluid supply cavities in fluid communication with the at least one plenum. Cooling fluid is supplied from the at least one plenum to the first plurality of fluid supply cavities in a first direction and the second plurality of fluid supply cavities in a second direction opposite the first direction.
    • 公开了用于冷却光纤的方法和装置。 在一个实施例中,在一些实施例中,用于在生产过程中冷却光纤的冷却装置包括由至少一个侧壁组件和沿着侧壁组件的内部定位的多个内部空腔限定的通道。 内部空腔包括至少一个气室,与至少一个气室流体连通的第一多个流体供应空腔,以及与至少一个气室流体连通的第二多个流体供应空腔。 冷却流体从第一方向从至少一个通气室供应到第一多个流体供应腔,并且第二多个流体供应腔沿与第一方向相反的第二方向供应。
    • 13. 发明授权
    • Alignment optimization for optical packages
    • 光学封装的对准优化
    • US08194248B2
    • 2012-06-05
    • US12267777
    • 2008-11-10
    • Vikram BhatiaSteven Joseph GregorskiFumio NagaiYukihiro Ozeki
    • Vikram BhatiaSteven Joseph GregorskiFumio NagaiYukihiro Ozeki
    • G01B11/00
    • G02B6/4204G02B6/4225G02B6/4227G02F1/3775H01S5/0092
    • Methods of optimizing optical alignment in an optical package are provided. In one embodiment, the optical package includes a laser diode, a wavelength conversion device, coupling optics positioned along an optical path extending from the laser diode to the wavelength conversion device, and one or more adaptive actuators. The method involves adjusting the optical alignment of the wavelength conversion device in a non-adaptive degree of freedom by referring to a thermally-dependent output intensity profile of the laser diode and a thermally-dependent coupling efficiency profile of the optical package. The adjustment in the non-adaptive degree of freedom is quantified such that, over a given operating temperature range of the optical package, portions of the coupling efficiency profile characterized by relatively low coupling efficiency offset portions of the output intensity profile characterized by relatively high laser output intensity and portions of the coupling efficiency profile characterized by relatively high coupling efficiency offset portions of the output intensity profile characterized by relatively low laser output intensity. Additional embodiments are disclosed and claimed.
    • 提供了优化光学封装中的光学对准的方法。 在一个实施例中,光学封装包括激光二极管,波长转换装置,沿着从激光二极管延伸到波长转换装置的光路定位的耦合光学器件,以及一个或多个自适应致动器。 该方法包括通过参考激光二极管的热依赖输出强度分布和光学封装的热依赖耦合效率分布来调整波长转换器件在非自适应自由度中的光学对准。 量化非自适应自由度的调节,使得在光学封装的给定工作温度范围内,耦合效率分布的部分以相对较低的耦合效率为特征,输出强度分布的偏移部分表现为相对较高的激光 输出强度和耦合效率分布的部分以由输出强度分布相对较高的耦合效率偏移部分表征,其特征在于相对低的激​​光输出强度。 公开并要求保护附加实施例。
    • 14. 发明授权
    • Optical package alignment systems and protocols
    • 光学封装对准系统和协议
    • US08139216B2
    • 2012-03-20
    • US12622742
    • 2009-11-20
    • Steven Joseph Gregorski
    • Steven Joseph Gregorski
    • G01B11/00
    • G02F1/37G02B6/4225G02B7/005G02F2001/3505G02F2001/3546
    • Methods of positioning an optical unit in an optical package are provided. According to one method, a partially assembled optical package is provided. The wavelength conversion device within the package comprises a conversion layer having a waveguide portion formed therein. The optical unit is coarse-positioned in the optical package to direct light from the laser diode to the wavelength conversion device in the form of a beam spot on an input face of the wavelength conversion device. The intensity of the frequency-converted optical signal output from the wavelength conversion device is monitored as the position of the optical unit is modified to 1D scan the beam spot along a portion of a crossing axis Y1 that crosses a planar projection of the conversion layer of the wavelength conversion device. Subsequently, the crossing axis Y1 is offset and the intensity monitoring step is repeated as the beam spot is 1D scanned along an offset crossing axis Y2.
    • 提供了将光学单元定位在光学封装中的方法。 根据一种方法,提供部分组装的光学封装。 封装内的波长转换器件包括其中形成有波导部分的转换层。 光学单元被粗略定位在光学封装中,以在波长转换器件的输入面上以束斑的形式将来自激光二极管的光引向波长转换器件。 监视从波长转换装置输出的频率转换光信号的强度,因为光学单元的位置被修改为1D沿着与交叉轴线Y1交叉的转换层的平面投影的交叉轴线Y1的一部分扫描光束点 波长转换装置。 随后,沿着偏移交叉轴线Y2扫描光束点,交叉轴Y1偏移,强度监视步骤重复。
    • 15. 发明申请
    • OPTICAL PACKAGE ALIGNMENT SYSTEMS AND PROTOCOLS
    • 光学包装对齐系统和协议
    • US20110122421A1
    • 2011-05-26
    • US12622742
    • 2009-11-20
    • Steven Joseph Gregorski
    • Steven Joseph Gregorski
    • G01B11/14
    • G02F1/37G02B6/4225G02B7/005G02F2001/3505G02F2001/3546
    • Methods of positioning an optical unit in an optical package are provided. According to one method, a partially assembled optical package is provided. The wavelength conversion device within the package comprises a conversion layer having a waveguide portion formed therein. The optical unit is coarse-positioned in the optical package to direct light from the laser diode to the wavelength conversion device in the form of a beam spot on an input face of the wavelength conversion device. The intensity of the frequency-converted optical signal output from the wavelength conversion device is monitored as the position of the optical unit is modified to 1D scan the beam spot along a portion of a crossing axis Y1 that crosses a planar projection of the conversion layer of the wavelength conversion device. Subsequently, the crossing axis Y1 is offset and the intensity monitoring step is repeated as the beam spot is 1D scanned along an offset crossing axis Y2. This process is repeated until the monitored intensity during the 1D scan meets or exceeds a crossing threshold, at which time an optimum crossing axis Y* and a corresponding optimum crossing coordinate y along the optimum crossing axis Y* are identified by referring to respective intensity profiles of the monitored intensities. A full set of optimum coordinates x, y, z are subsequently identified by monitoring the intensity of a frequency-converted optical signal output from the wavelength conversion device as the position of the optical unit is modified to 1D scan the beam spot along a portion of one or more intersecting axes, one of which intersects the optimum crossing axis Y*. Additional embodiments are disclosed and claimed.
    • 提供了将光学单元定位在光学封装中的方法。 根据一种方法,提供部分组装的光学封装。 封装内的波长转换器件包括其中形成有波导部分的转换层。 光学单元被粗略定位在光学封装中,以在波长转换器件的输入面上以束斑的形式将来自激光二极管的光引向波长转换器件。 监视从波长转换装置输出的频率转换光信号的强度,因为光学单元的位置被修改为1D沿着与交叉轴线Y1交叉的转换层的平面投影的交叉轴线Y1的一部分扫描光束点 波长转换装置。 随后,沿着偏移交叉轴线Y2扫描光束点,交叉轴Y1偏移,强度监视步骤重复。 重复该过程直到1D扫描期间的监视强度达到或超过交叉阈值,此时通过参考相应的强度分布来识别沿最佳交叉轴线Y *的最佳交叉轴线Y *和相应的最佳交叉坐标y 的监测强度。 随后通过监测从波长转换装置输出的频率转换的光信号的强度,随着光学单元的位置被修改为1D扫描沿着一部分光束点的光束点,识别出一整套最佳坐标x,y,z 一个或多个相交轴,其中一个相交于最佳交叉轴线Y *。 公开并要求保护附加实施例。
    • 16. 发明授权
    • Optical package comprising an adjustable lens component coupled to a multi-directional lens flexure
    • 光学包装包括耦合到多方向透镜挠曲件的可调透镜部件
    • US07898752B2
    • 2011-03-01
    • US12276509
    • 2008-11-24
    • Steven Joseph GregorskiMatthew Patrick Hammond
    • Steven Joseph GregorskiMatthew Patrick Hammond
    • G02B7/02
    • G02B7/023G02B6/4226
    • An optical package is provided comprising a lens system, the lens system comprising an adjustable lens component, a plurality of magnetic elements, and a multi-directional lens flexure. The adjustable lens component is mechanically coupled to a lens mounting portion of the multi-directional lens flexure. The magnetic elements comprise at least one fixed magnetic element and at least one motive magnetic element. The arrangement of the fixed and motive magnetic elements relative to each other forms a first fixed/motive element pair and a second fixed/motive element pair. The motive magnetic element of each fixed/motive element pair is mechanically coupled to a motive portion of the multi-directional lens flexure. The structure of the multi-directional lens flexure and the arrangement of the fixed/motive element pairs is such that non-orthogonal repulsive or attractive magnetic force vectors generated between magnetic elements of the respective fixed/motive element pairs generate movement of the adjustable lens component through orthogonal components x, y along X and Y axes of the X-Y optical reference frame.
    • 提供了一种光学封装,其包括透镜系统,透镜系统包括可调透镜部件,多个磁性元件和多方向透镜弯曲部。 可调透镜部件机械耦合到多方向透镜弯曲部的透镜安装部分。 磁性元件包括至少一个固定磁性元件和至少一个动力磁性元件。 固定和动力磁性元件相对于彼此的布置形成第一固定/动力元件对和第二固定/动力元件对。 每个固定/动力元件对的动力磁性元件机械耦合到多方向透镜挠曲件的动力部分。 多方向透镜弯曲的结构和固定/动力元件对的布置使得在相应固定/动力元件对的磁性元件之间产生的非正交排斥或有吸引力的磁力矢量产生可调透镜部件的运动 通过XY光学参考系的X轴和Y轴的正交分量x,y。
    • 17. 发明申请
    • Optical Package Comprising an Adjustable Lens Component Coupled to a Multi-Directional Lens Flexure
    • 光学包装包括可调整的透镜组件,耦合到多向透镜弯曲
    • US20100128369A1
    • 2010-05-27
    • US12276509
    • 2008-11-24
    • Steven Joseph GregorskiMatthew Patrick Hammond
    • Steven Joseph GregorskiMatthew Patrick Hammond
    • G02B7/04
    • G02B7/023G02B6/4226
    • An optical package is provided comprising a lens system, the lens system comprising an adjustable lens component, a plurality of magnetic elements, and a multi-directional lens flexure. The adjustable lens component is mechanically coupled to a lens mounting portion of the multi-directional lens flexure. The magnetic elements comprise at least one fixed magnetic element and at least one motive magnetic element. The arrangement of the fixed and motive magnetic elements relative to each other forms a first fixed/motive element pair and a second fixed/motive element pair. The motive magnetic element of each fixed/motive element pair is mechanically coupled to a motive portion of the multi-directional lens flexure. The structure of the multi-directional lens flexure and the arrangement of the fixed/motive element pairs is such that non-orthogonal repulsive or attractive magnetic force vectors generated between magnetic elements of the respective fixed/motive element pairs generate movement of the adjustable lens component through orthogonal components x, y along X and Y axes of the X-Y optical reference frame.
    • 提供了一种光学封装,其包括透镜系统,透镜系统包括可调透镜部件,多个磁性元件和多方向透镜弯曲部。 可调透镜部件机械耦合到多方向透镜弯曲部的透镜安装部分。 磁性元件包括至少一个固定磁性元件和至少一个动力磁性元件。 固定和动力磁性元件相对于彼此的布置形成第一固定/动力元件对和第二固定/动力元件对。 每个固定/动力元件对的动力磁性元件机械耦合到多方向透镜挠曲件的动力部分。 多方向透镜弯曲的结构和固定/动力元件对的布置使得在相应固定/动力元件对的磁性元件之间产生的非正交排斥或有吸引力的磁力矢量产生可调透镜部件的运动 通过XY光学参考系的X轴和Y轴的正交分量x,y。