会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • METHOD AND APPARATUS TO PRODUCE ULTRASONIC IMAGES USING MULTIPLE APERTURES
    • 使用多种方法生产超声波图像的方法和装置
    • WO2008051639A3
    • 2008-09-25
    • PCT/US2007073615
    • 2007-07-16
    • MAUI IMAGING INCSPECHT DONALD F
    • SPECHT DONALD F
    • A61B8/00
    • A61B8/145A61B5/725A61B8/08A61B8/085A61B8/42A61B8/4209A61B8/4218A61B8/4245A61B8/4281A61B8/4455A61B8/4483A61B8/4494A61B8/483A61B8/5207A61B8/5253A61B8/543G01S7/52046G01S7/5205G01S15/8977
    • An ultrasonic scanner and an omnidirectional receive transducer for producing a two-dimensional image from the echoes received by single omnidirectional transducer. Two-dimensional images with different noise components can be constructed from the echoes received and combinable to produce images with better signal to noise ratios and lateral resolution. A method based on information content to compensate for the different delays and paths through intervening tissue is described. Specular reflections are attenuated using a single omnidirectional receiver displaced from the insonifying probe. These techniques have broad application in medical imaging suited to multi-aperture cardiac imaging using two or more intercostal spaces Another method employs multiple transducers increasing the lateral resolution and reducing noise and includes two or more active phased array transducers in the same scan plane The phase delays are computed such that the transducers operate as one larger phased array with a gap (or gaps) in the middle.
    • 超声波扫描器和全向接收换能器,用于从由单向全向换能器接收的回波产生二维图像。 可以从接收到的回波构建具有不同噪声分量的二维图像,并且可以组合以产生具有更好的信噪比和横向分辨率的图像。 描述了基于信息内容以补偿通过中间组织的不同延迟和路径的方法。 使用从失真探头移位的单个全向接收器来衰减镜面反射。 这些技术在适用于使用两个或多个肋间空间的多孔心脏成像的医学成像中具有广泛的应用。另一种方法使用多个换能器来增加横向分辨率并降低噪声,并且在同一扫描平面中包括两个或更多个有源相控阵转换器。相位延迟 被计算为使得换能器作为一个较大的相控阵列工作,在中间具有间隙(或间隙)。
    • 14. 发明申请
    • METHOD AND APPARATUS TO VISUALIZE THE CORONARY ARTERIES USING ULTRASOUND
    • 使用超声视觉证实冠状动脉的方法和装置
    • WO2007092054A2
    • 2007-08-16
    • PCT/US2006035995
    • 2006-09-14
    • SPECHT DONALD F
    • SPECHT DONALD F
    • G06T7/0012A61B5/02007A61B5/7257A61B5/7264A61B8/06A61B8/08A61B8/0883A61B8/0891A61B8/4254A61B8/483A61B8/543G06T2207/10136G06T2207/20092G06T2207/30048G06T2207/30101
    • A non-invasive screening technique for visualizing coronary arteries which overcomes the problems of visualizing the curved arteries by projecting the three dimensional volume of the arteries onto a two dimensional screen. Blood filled areas, and in particular, the coronary arteries and veins, are highlighted to contrast them with other nearby tissues using non-linear classification and segmentation techniques. Data is gathered as a sequence of 2D slices stored as a 3D volume. Software is employed to interpolate voxels intermediate to the slices. Wiener filtering or LMS spatial filtering can be implemented on each 2D scan to improve lateral resolution and reduce noise prior to the use of the scan data with the classification and segmentation algorithms. A traditional handheld ultrasound probe is employed to enable the technician to locate the area of interest, but a gyroscopic stabilizer is added to minimize unwanted variation on two axes of rotation while scanning through angles on the third axis of rotation.
    • 一种用于可视化冠状动脉的非侵入性筛查技术,其通过将三维体积的动脉投影到二维屏幕上来克服可视化弯曲动脉的问题。 突出显示血液填充区域,特别是冠状动脉和静脉,使用非线性分类和分割技术将其与其他附近组织进行对比。 数据被收集为作为3D体积存储的2D片段的序列。 使用软件来插入片段中间的体素。 维纳滤波或LMS空间滤波可以在每个2D扫描上实现,以便在使用分类和分割算法的扫描数据之前提高横向分辨率并降低噪点。 采用传统的手持式超声波探头来使技术人员能够定位感兴趣的区域,但是增加一个陀螺稳定器以最小化两个旋转轴上的不必要的变化,同时扫描第三个旋转轴上的角度。
    • 15. 发明申请
    • STRING SEARCH NEURON FOR ARTIFICIAL NEURAL NETWORKS
    • 搜索神经网络的人造神经网络
    • WO02082304A8
    • 2004-02-05
    • PCT/US0210966
    • 2002-04-08
    • SPECHT DONALD FPAILLET GUY
    • SPECHT DONALD FPAILLET GUY
    • G06E1/00G06E3/00G06F15/18G06G7/00G06N3/02G06N3/063G06N3/10
    • G06K9/6273G06N3/063G06N3/105
    • An improved neuron and corresponding search operation for use in matching strings of characters from a character set or strings of pixels from an image is at least partly based on ZISC technology. Each neuron contains only one character in the string of characters to be searched or, equivalently, one pixel in the image to be searched. The neurons are lined up in order (unlike standard ZISC). The inventive system matches two strings of base-pairs, one of which is stored in the neurons, and the other of which is entered into the system input one character at a time and thereafter broadcast to all of the neurons. The inputs, outputs and contents of each neuron in the system include one stored base pair, a left_errors register; a right_errors register; a parallel sort bus; and a neuron number or location register. The operation may include the following steps: at the start of the operation, all left_errors and right_errors registers are reset to "0". When one base-pair is entered into the system input, all neurons compare it to their own stored base-pair. If it is the same, right_errors=left_errors + 0 (which becomes left_errors to the next neuron in the left to right arrangement). If it is different, right_errors=left_errors + 1. This operation continues for all of the base-pairs in the input sub string. At the end of the sub string of "m" characters, each right_errors register will record the number of errors (or mismatched pairs) in the "m" characters to the left of its position in the sequence (including itself). A "0" result indicates that there was a perfect match of the input to this part of the sequence. A "l" indicates that there is an almost perfect match with only one mismatch. A "2" through "6" result indicates that number of mismatches. If left_errors equals "7", then right_errors will always equal "7". The fourth bit indicates that an end of the stored substring character has been reached. When this bit is turned on, then left_errors will always be transferred to right_errors unchanged until the end of the input sub string. At the end of an input sub string (i.e., the end of a search), a parallel search in the manner of a standard ZISC search is performed.
    • 用于匹配来自图像的字符集或像素串的字符串的改进的神经元和相应的搜索操作至少部分地基于ZISC技术。 每个神经元只包含要搜索的字符串中的一个字符,或者相当于要搜索的图像中的一个像素。 神经元按顺序排列(与标准ZI​​SC不同)。 本发明的系统匹配两串碱基对,其中一个碱基对存储在神经元中,另一个碱基对一次被输入到系统输入中一个字符,然后广播到所有的神经元。 系统中每个神经元的输入,输出和内容包括一个存储的基对,一个左错误寄存器; 一个right_errors注册表 并行排序总线 和神经元号或位置寄存器。 该操作可以包括以下步骤:在操作开始时,所有的left_errors和right_errors寄存器都被重置为“0”。 当一个碱基对被输入到系统输入中时,所有神经元将它们与它们自己存储的碱基对进行比较。 如果它是一样的,right_errors = left_errors + 0(从左到右排列成为下一个神经元的left_errors)。 如果不同,则right_errors = left_errors + 1。对于输入子字符串中的所有基对,此操作将继续。 在“m”个字符串的末尾,每个right_errors寄存器将在序列(包括其自身)中将“m”个字符中的错误数量(或不匹配的对)记录到其位置的左侧。 “0”结果表示与序列的这一部分的输入完美匹配。 “l”表示几乎完美匹配,只有一个不匹配。 “2”到“6”的结果表示不匹配的数量。 如果left_errors等于“7”,则right_errors将始终等于“7”。 第四位表示存储的子字符串的结尾已经到达。 当该位打开时,left_errors将始终传递到right_errors,直到输入子字符串的结尾。 在输入子字符串的末尾(即搜索结束),以标准ZISC搜索的方式执行并行搜索。
    • 20. 发明申请
    • STRING SEARCH NEURON FOR ARTIFICIAL NEURAL NETWORKS
    • 搜索神经网络的人造神经网络
    • WO2002082304A1
    • 2002-10-17
    • PCT/US2002/010966
    • 2002-04-08
    • SPECHT, Donald, F.PAILLET, Guy
    • SPECHT, Donald, F.PAILLET, Guy
    • G06F15/18
    • G06K9/6273G06N3/063G06N3/105
    • An improved neuron and corresponding search operation for use in matching strings of characters from a character set or strings of pixels from an image is at least partly based on ZISC technology. Each neuron contains only one character in the string of characters to be searched or, equivalently, one pixel in the image to be searched. The neurons are lined up in order (unlike standard ZISC). The inventive system matches two strings of base-pairs, one of which is stored in the neurons, and the other of which is entered into the system input one character at a time and thereafter broadcast to all of the neurons. The inputs, outputs and contents of each neuron in the system include one stored base pair, a left_errors register; a right_errors register; a parallel sort bus; and a neuron number or location register. The operation may include the following steps: at the start of the operation, all left_errors and right_errors registers are reset to "0". When one base-pair is entered into the system input, all neurons compare it to their own stored base-pair. If it is the same, right_errors=left_errors + 0 (which becomes left_errors to the next neuron in the left to right arrangement). If it is different, right_errors=left_errors + 1. This operation continues for all of the base-pairs in the input sub string. At the end of the sub string of "m" characters, each right_errors register will record the number of errors (or mismatched pairs) in the "m" characters to the left of its position in the sequence (including itself). A "0" result indicates that there was a perfect match of the input to this part of the sequence. A "l" indicates that there is an almost perfect match with only one mismatch. A "2" through "6" result indicates that number of mismatches. If left_errors equals "7", then right_errors will always equal "7". The fourth bit indicates that an end of the stored substring character has been reached. When this bit is turned on, then left_errors will always be transferred to right_errors unchanged until the end of the input sub string. At the end of an input sub string (i.e., the end of a search), a parallel search in the manner of a standard ZISC search is performed.
    • 用于匹配来自图像的字符集或像素串的字符串的改进的神经元和相应的搜索操作至少部分地基于ZISC技术。 每个神经元只包含要搜索的字符串中的一个字符,或者相当于要搜索的图像中的一个像素。 神经元按顺序排列(与标准ZI​​SC不同)。 本发明的系统匹配两串碱基对,其中一个碱基对存储在神经元中,另一个碱基对一次被输入到系统输入中一个字符,然后广播到所有的神经元。 系统中每个神经元的输入,输出和内容包括一个存储的基对,一个左错误寄存器; 一个right_errors注册表 并行排序总线 和神经元号或位置寄存器。 该操作可以包括以下步骤:在操作开始时,所有的left_errors和right_errors寄存器都被重置为“0”。 当一个碱基对被输入到系统输入中时,所有神经元将它们与它们自己存储的碱基对进行比较。 如果它是一样的,right_errors = left_errors + 0(从左到右排列成为下一个神经元的left_errors)。 如果不同,则right_errors = left_errors + 1。对于输入子字符串中的所有基对,此操作将继续。 在“m”个字符串的末尾,每个right_errors寄存器将在序列(包括其自身)中将“m”个字符中的错误数量(或不匹配的对)记录到其位置的左侧。 “0”结果表示与序列的这一部分的输入完美匹配。 “l”表示几乎完美匹配,只有一个不匹配。 “2”到“6”的结果表示不匹配的数量。 如果left_errors等于“7”,则right_errors将始终等于“7”。 第四位表示存储的子字符串的结尾已经到达。 当该位打开时,left_errors将始终传递到right_errors,直到输入子字符串的结尾。 在输入子字符串的末尾(即搜索结束),以标准ZISC搜索的方式执行并行搜索。