会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明申请
    • COMPLEX STRUCTURES IN REFRACTORY BODIES AND METHODS OF FORMING
    • 在炼钢厂的复杂结构和形成方法
    • WO2013082257A1
    • 2013-06-06
    • PCT/US2012/067015
    • 2012-11-29
    • CORNING INCORPORATEDMARQUES, Gaspar P
    • MARQUES, Gaspar P
    • B01J19/00
    • F16L15/00B01J6/00B01J19/0093B01J2219/00813B01J2219/00824B01J2219/00831Y10T137/8593
    • A method of forming complex structures in a ceramic-, glass- or glass- ceramic-body microfluidic module is disclosed including the steps of providing at green-state refractory- material structure (140) comprising least a portion of a body of a microfluidic module, providing a removeable insert (120) formed of a carbon or of a carbonaceous material having an external surface comprising a negative surface (122) of a desired surface to be formed in the microfluidic module, machining an opening (132) in the green-state structure (140), positioning the insert (120) in the opening (132), firing the green-state structure (140) and the insert (120) together, and after firing is complete, removing the insert (120). The insert (120) is desirably a screw or screw shape, such that interior threads are formed thereby. The insert (120) desirably comprises graphite, and the structure desirably comprises ceramic, desirably silicon carbide.
    • 公开了一种在陶瓷,玻璃或玻璃 - 陶瓷体微流体模块中形成复杂结构的方法,包括以下步骤:提供在绿色状态的耐火材料结构(140),其包括微流体模块的主体的至少一部分 提供由碳或碳质材料形成的可移除插入物(120),所述可移除插入物(120)具有外表面,所述外表面包括要形成在所述微流体模块中的期望表面的负表面(122) 状态结构(140),将所述插入件(120)定位在所述开口(132)中,将所述生坯状态结构(140)和所述插入件(120)烧结在一起,并且在点火完成之后,移除所述插入件(120)。 插入件(120)理想地是螺钉或螺钉形状,从而由此形成内螺纹。 插入件(120)期望地包括石墨,并且该结构理想地包括陶瓷,期望地是碳化硅。
    • 17. 发明申请
    • ENHANCED THERMAL CHARACTERISTICS IN FLUIDIC MODULES
    • 流体模块中增强的热特性
    • WO2012030876A1
    • 2012-03-08
    • PCT/US2011/049814
    • 2011-08-31
    • CORNING INCORPORATEDFRISKE, Mark StephenMABRUT, MickaelMARQUES, Paulo Gaspar JorgeSUTHERLAND, James ScottTRACY, Ian David
    • FRISKE, Mark StephenMABRUT, MickaelMARQUES, Paulo Gaspar JorgeSUTHERLAND, James ScottTRACY, Ian David
    • B01J19/00
    • B01J19/0093B01J2219/00783B01J2219/00804B01J2219/00824B01J2219/00828B01J2219/00831B01J2219/00858B01J2219/00873B01L3/502707B01L7/00B01L2200/0689B01L2300/0874B01L2300/0887B01L2300/12B01L2300/1838B81B1/00B81B3/0081F28D9/0037F28F3/12F28F21/006F28F2260/02
    • A fluidic module (100) is provided comprising at least two independent sets (10A,10B) of fluid microchannels (10), a network of glass channel walls (20), one or more thermal exchange partitions (30), and one or more bonding layers (40). The fluid microchannels (10) are configured such that at least a portion of the fluid flow path of one set of microchannels (10A) is partitioned from a portion of the fluid flow path of another set of microchannels (10B) by a thermal exchange partition (30). The thermal exchange partition (30) comprises a non-glassy composition characterized by a thermal conductivity greater than approximately 15 W/(m•K). Respective channel wall end portions (25) of the network of channel walls (20) interface with the thermal exchange partition (30) via one or more bonding pads defined by the bonding layer (40). The bonding layer (40) comprises a glass composition characterized by a thermal conductivity that is less than the thermal conductivity of the thermal exchange partition (30) and by a coefficient of thermal expansion that approximates the coefficient of thermal expansion of the thermal exchange partition (30). The bonding pads defined by the bonding layer (40) lie between the channel wall end portions (25) of the network of glass channel walls (20) and the thermal exchange partition (30) and the bonding layer (40) extends at least partially along the thermal exchange partition (30) into the fluid flow paths of the fluid microchannels (10), as defined by the network of glass channel walls (20).
    • 提供流体模块(100),其包括至少两个流体微通道(10)的独立组(10A,10B),玻璃通道壁(20),一个或多个热交换隔板(30)和一个或多个 接合层(40)。 流体微通道(10)被构造成使得一组微通道(10A)的流体流路的至少一部分与另一组微通道(10B)的流体流动路径的一部分通过热交换分隔件 (30)。 热交换隔板(30)包括非导热组合物,其特征在于热导率大于约15W /(m°K)。 通道壁(20)的网络的各个通道壁端部(25)通过由结合层(40)限定的一个或多个接合焊盘与热交换隔板(30)相接合。 接合层(40)包括玻璃组合物,其特征在于热导率小于热交换隔板(30)的热导率,并且热膨胀系数近似于热交换隔板的热膨胀系数 30)。 由接合层(40)限定的接合焊盘位于玻璃通道壁(20)网络的通道壁端部(25)和热交换隔板(30)之间,并且接合层(40)至少部分延伸 沿着热交换分隔件(30)进入流体微通道(10)的流体流动路径,如由玻璃通道壁(20)的网络所限定的。
    • 18. 发明申请
    • FREQUENCY DOUBLED SEMICONDUCTOR LASER HAVING HEAT SPREADER ON SHG CRYSTAL
    • SHG晶体上带有热传播的频率双重半导体激光
    • WO2012015724A1
    • 2012-02-02
    • PCT/US2011/045154
    • 2011-07-25
    • CORNING INCORPORATEDHUGHES, Lawrence, Charles, Jr.PIECH, Garrett, A
    • HUGHES, Lawrence, Charles, Jr.PIECH, Garrett, A
    • H01S5/00H01S5/024G02F1/377G02B26/08G02B6/42
    • H01S5/0092G02B26/0833G02B26/105G02F1/377G02F2001/3505H01S5/005H01S5/0071H01S5/02248H01S5/0226H01S5/02438
    • A hybrid laser hybrid laser comprises a semiconductor laser (50) supported directly or indirectly on a package substrate (20), a frequency- doubling crystal (60) supported via a first surface thereof on a supporting surface of a thermally conductive support (40) connected to the package substrate, with the crystal positioned so as to be able to receive light from the laser, and a thermally conductive heat spreader element (80) mounted on a second surface of the crystal. The thermally conductive element has a thermal conductivity greater than a thermal conductivity of the crystal, desirably at least 100W/mK or even 300W/mK. The thermally conductive element is not connected to the package substrate or to the thermally conductive support. While the thermally conductive element or "heat spreader" does not act directly to cool the crystal by conducting heat away, it acts to increase the uniformity of the temperature of the crystal, allowing the crystal to achieve higher light conversion efficiencies while remaining within the constraints of the folded-path hybrid laser package. The preferred simple slab structure of the thermally conductive element allows for a very easily manufactured laser package and structure.
    • 混合激光混合激光器包括直接或间接地支撑在封装衬底(20)上的半导体激光器(50),经由其导热支撑件(40)的支撑表面上的第一表面支撑的倍频晶体(60) 连接到封装衬底,晶体被定位成能够接收来自激光器的光;以及导热散热器元件(80),安装在晶体的第二表面上。 导热元件的导热率大于晶体的热导率,理想地至少为100W / mK甚至300W / mK。 导热元件不连接到封装衬底或导热支撑件。 虽然导热元件或“散热器”不直接通过传导散热来作用来冷却晶体,但其作用是增加晶体温度的均匀性,从而允许晶体获得更高的光转换效率,同时保持在约束条件内 的折叠路径混合激光器封装。 导热元件的优选的简单板坯结构允许非常容易制造的激光器封装和结构。
    • 19. 发明申请
    • REACTOR WITH UPPER AND LOWER MANIFOLD STRUCTURES
    • 具有上层和下层结构的反应器
    • WO2010141352A1
    • 2010-12-09
    • PCT/US2010/036567
    • 2010-05-28
    • CORNING INCORPORATEDSUTHERLAND, James, S.WOODFIN, Andrew, D.
    • SUTHERLAND, James, S.WOODFIN, Andrew, D.
    • B01J19/24
    • B01J19/2485F28F7/02
    • A reactor is provided comprising a reactor substrate and upper and lower manifold structures. The upper manifold structure and the lower manifold structure each comprise at least one flow directing cavity that reverses a flow direction of a fluid flowing through the relatively short open-ended channels of the substrate between the upper and lower manifold structures. The flow directing cavities of the upper and lower manifold structures are configured to direct fluid from the inlet region of the upper manifold structure to the outlet region of the lower manifold structure in an additional serpentine path defined by the flow direction reversals introduced by the upper and lower manifold structures. Additional embodiments are disclosed and claimed.
    • 提供了包括反应器基板和上部和下部歧管结构的反应器。 上歧管结构和下歧管结构每个包括至少一个流动引导腔,其使流过在上歧管结构和下歧管结构之间的衬底的相对短的开口端通道的流体的流动方向相反。 上歧管结构和下歧管结构的导流腔被构造成将流体从上歧管结构的入口区域引导到下歧管结构的出口区域,该额外的蛇形路径由由上和下歧管结构引入的流动方向反向限定, 下歧管结构。 公开并要求保护附加实施例。