会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 132. 发明申请
    • N-type carrier enhancement in semiconductors
    • 半导体中的N型载流子增强
    • US20100261319A1
    • 2010-10-14
    • US12420258
    • 2009-04-08
    • Jee Hwan KimStephen W. BedellSiegfried MaurerDevendra K. Sadana
    • Jee Hwan KimStephen W. BedellSiegfried MaurerDevendra K. Sadana
    • H01L21/265H01L21/20H01L21/335
    • H01L21/26513H01L29/165H01L29/167H01L29/66636Y10S438/919
    • A method for generating n-type carriers in a semiconductor is disclosed. The method includes supplying a semiconductor having an atomic radius. Implanting an n-type dopant species into the semiconductor, which n-type dopant species has a dopant atomic radius. Implanting a compensating species into the semiconductor, which compensating species has a compensating atomic radius. Selecting the n-type dopant species and the compensating species in such manner that the size of the semiconductor atomic radius is inbetween the dopant atomic radius and the compensating atomic radius. A further method is disclosed for generating n-type carriers in germanium (Ge). The method includes setting a target concentration for the carriers, implanting a dose of an n-type dopant species into the Ge, and selecting the dose to correspond to a fraction of the target carrier concentration. Thermal annealing the Ge in such manner as to activate the n-type dopant species and to repair a least a portion of the implantation damage. Repeating the implantation and the thermal annealing until the target n-type carrier concentration has been reached.
    • 公开了一种在半导体中产生n型载流子的方法。 该方法包括提供具有原子半径的半导体。 将n型掺杂物种植入半导体,其中n型掺杂剂物质具有掺杂剂原子半径。 将补偿物种植入到半导体中,补偿物质具有补偿原子半径。 以使得半导体原子半径的尺寸在掺杂剂原子半径和补偿原子半径之间的方式选择n型掺杂物种类和补偿种类。 公开了用于在锗(Ge)中生成n型载流子的另一种方法。 该方法包括设定载体的目标浓度,将一定剂量的n型掺杂剂物质注入到Ge中,并选择与目标载体浓度分数相对应的剂量。 对Ge进行热退火,以激活n型掺杂物种类并修复至少一部分注入损伤。 重复注入和热退火直到目标n型载流子浓度达到。
    • 135. 发明授权
    • Method of forming strained silicon materials with improved thermal conductivity
    • 形成具有改善导热性的应变硅材料的方法
    • US07247546B2
    • 2007-07-24
    • US10710826
    • 2004-08-05
    • Stephen W. BedellHuajie ChenKeith FogelRyan M. MitchellDevendra K. Sadana
    • Stephen W. BedellHuajie ChenKeith FogelRyan M. MitchellDevendra K. Sadana
    • H01L21/20H01L21/36H01L31/117
    • H01L29/1054H01L21/02381H01L21/0245H01L21/02507H01L21/02532
    • A method is disclosed for forming a strained Si layer on SiGe, where the SiGe layer has improved thermal conductivity. A first layer of Si or Ge is deposited on a substrate in a first depositing step; a second layer of the other element is deposited on the first layer in a second depositing step; and the first and second depositing steps are repeated so as to form a combined SiGe layer having a plurality of Si layers and a plurality of Ge layers. The respective thicknesses of the Si layers and Ge layers are in accordance with a desired composition ratio of the combined SiGe layer (so that a 1:1 ratio typically is realized with Si and Ge layers each about 10 Å thick). The combined SiGe layer is characterized as a digital alloy of Si and Ge having a thermal conductivity greater than that of a random alloy of Si and Ge. This method may further include the step of depositing a Si layer on the combined SiGe layer; the combined SiGe layer is characterized as a relaxed SiGe layer, and the Si layer is a strained Si layer. For still greater thermal conductivity in the SiGe layer, the first layer and second layer may be deposited so that each layer consists essentially of a single isotope.
    • 公开了一种在SiGe上形成应变Si层的方法,其中SiGe层具有改善的导热性。 在第一沉积步骤中将第一层Si或Ge沉积在衬底上; 另一个元件的第二层在第二沉积步骤中沉积在第一层上; 并且重复第一和第二沉积步骤以形成具有多个Si层和多个Ge层的组合SiGe层。 Si层和Ge层的各自的厚度根据组合的SiGe层的期望组成比(使得Si和Ge层的厚度通常为1:1,每个厚度大约为10埃)。 组合的SiGe层的特征在于具有大于Si和Ge的随机合金的热导率的Si和Ge的数字合金。 该方法还可以包括在组合的SiGe层上沉积Si层的步骤; 组合的SiGe层被表征为弛豫的SiGe层,并且Si层是应变的Si层。 对于SiGe层中更高的热导率,可以沉积第一层和第二层,使得每层基本上由单一同位素组成。