会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 101. 发明授权
    • Storage abuse prevention
    • 存储滥用预防
    • US07848501B2
    • 2010-12-07
    • US11042245
    • 2005-01-25
    • Joshua T. GoodmanCarl M. KadieChristopher A. Meek
    • Joshua T. GoodmanCarl M. KadieChristopher A. Meek
    • H04M3/42G06F15/16
    • G06F21/606G06F21/316G06F21/552G06F2221/2135H04L51/00H04L63/1408
    • The subject invention provides a unique system and method that facilitates mitigation of storage abuse in connection with free storage provided by messaging service providers such as email, instant messaging, chat, blogging, and/or web hosting service providers. The system and method involve measuring the outbound volume of stored data. When the volume satisfies a threshold, a cost can be imposed on the account to mitigate the suspicious or abusive activity. Other factors can be considered as well that can modify the cost imposed on the cost such as by increasing the cost. Machine learning can be employed as well to predict a level or degree of suspicion. The various factors or the text of the messages can be used as input for the machine learning system.
    • 本发明提供了一种独特的系统和方法,其有助于缓解由诸如电子邮件,即时消息,聊天,博客和/或网络托管服务提供商之类的消息传递服务提供商提供的免费存储的存储滥用。 系统和方法涉及测量存储数据的出站量。 当卷满足阈值时,可以对该帐户施加成本以减轻可疑或滥用活动。 也可以考虑其他因素,从而可以通过增加成本来改变对成本的成本。 也可以使用机器学习来预测一定程度的怀疑。 消息的各种因素或文本可以用作机器学习系统的输入。
    • 103. 发明申请
    • APPLICATION REPUTATION SERVICE
    • 申请信誉服务
    • US20100005291A1
    • 2010-01-07
    • US12103713
    • 2008-04-16
    • Geoff HultenSteve RehfussRon FranczykChristopher A. MeekJohn ScarrowAndrew Newman
    • Geoff HultenSteve RehfussRon FranczykChristopher A. MeekJohn ScarrowAndrew Newman
    • G06F21/22
    • G06F21/56G06F17/3053G06F21/44G06F21/51G06F2221/033H04L63/20
    • The claimed subject matter is directed to the use of an application reputation service to assist users with minimizing their computerized machines' exposure to and infection from malware. Specifically, the claimed subject matter provides a method and system of an application reputation service that contains the reputations for elements that are known to be non-malicious as well as those known to be malicious.One embodiment of the claimed subject matter is implemented as a method to determine the reputation of an element (e.g., an application). When a user attempts to install or execute a new application, the Application Reputation Service is queried by the user's machine with a set of identities for the element. The Application Reputation Service determines the reputation of the application by referencing a knowledge base of known reputations and returns an indication (e.g., an overall rating, or a flag) of how safe that application would be to install and run on the user's computer.
    • 所要求保护的主题涉及使用应用程序信誉服务来帮助用户最小化其计算机化机器对恶意软件的暴露和感染。 具体地,所要求保护的主题提供了应用程序信誉服务的方法和系统,其包含已知是非恶意的元件以及已知是恶意的元件的声誉。 所要求保护的主题的一个实施例被实现为确定元素(例如,应用)的声誉的方法。 当用户尝试安装或执行新应用程序时,应用程序信誉服务将由用户的机器查询,该元素具有一组标识。 应用程序信誉服务通过引用已知声誉的知识库来确定应用程序的声誉,并返回应用程序将如何安全地在用户的计算机上安装和运行的指示(例如,总体评级或标志)。
    • 105. 发明授权
    • Systems and methods for new time series model probabilistic ARMA
    • 新时间序列模型概率ARMA的系统和方法
    • US07580813B2
    • 2009-08-25
    • US10463145
    • 2003-06-17
    • Bo ThiessonChristopher A. MeekDavid M. ChickeringDavid E. Heckerman
    • Bo ThiessonChristopher A. MeekDavid M. ChickeringDavid E. Heckerman
    • G06F17/50G05B23/02
    • G06F17/18
    • The present invention utilizes a cross-prediction scheme to predict values of discrete and continuous time observation data, wherein conditional variance of each continuous time tube variable is fixed to a small positive value. By allowing cross-predictions in an ARMA based model, values of continuous and discrete observations in a time series are accurately predicted. The present invention accomplishes this by extending an ARMA model such that a first time series “tube” is utilized to facilitate or “cross-predict” values in a second time series tube to form an “ARMAxp” model. In general, in the ARMAxp model, the distribution of each continuous variable is a decision graph having splits only on discrete variables and having linear regressions with continuous regressors at all leaves, and the distribution of each discrete variable is a decision graph having splits only on discrete variables and having additional distributions at all leaves.
    • 本发明利用交叉预测方案来预测离散和连续时间观测数据的值,其中每个连续时间管变量的条件方差固定为小的正值。 通过在基于ARMA的模型中允许交叉预测,可以准确预测时间序列中连续和离散观测值。 本发明通过扩展ARMA模型来实现这一目的,使得第一时间序列“管”用于促进或“交叉预测”第二时间序列管中的值以形成“ARMAxp”模型。 一般来说,在ARMAxp模型中,每个连续变量的分布是仅在离散变量上分裂并具有在所有叶上具有连续回归的线性回归的决策图,并且每个离散变量的分布是仅分解为 离散变量,并在所有叶子上具有额外的分布。
    • 106. 发明授权
    • Systems and methods for discriminative density model selection
    • 用于区分密度模型选择的系统和方法
    • US07548856B2
    • 2009-06-16
    • US10441470
    • 2003-05-20
    • Bo ThiessonChristopher A. Meek
    • Bo ThiessonChristopher A. Meek
    • G10L15/06
    • G06K9/6226G06K9/6296G10L15/08
    • The present invention utilizes a discriminative density model selection method to provide an optimized density model subset employable in constructing a classifier. By allowing multiple alternative density models to be considered for each class in a multi-class classification system and then developing an optimal configuration comprised of a single density model for each class, the classifier can be tuned to exhibit a desired characteristic such as, for example, high classification accuracy, low cost, and/or a balance of both. In one instance of the present invention, error graph, junction tree, and min-sum propagation algorithms are utilized to obtain an optimization from discriminatively selected density models.
    • 本发明利用鉴别密度模型选择方法来提供可用于构建分类器的优化密度模型子集。 通过允许在多类分类系统中为每个类别考虑多个替代密度模型,然后开发由每个类别的单个密度模型组成的最佳配置,分类器可以被调谐以呈现期望的特性,例如 ,分类精度高,成本低,和/或两者的平衡。 在本发明的一个实例中,使用误差图,结树和最小和传播算法来从区分选择的密度模型中获得优化。
    • 109. 发明授权
    • Systems and methods for adaptive handwriting recognition
    • 自适应手写识别的系统和方法
    • US07460712B2
    • 2008-12-02
    • US11672458
    • 2007-02-07
    • Bo ThiessonChristopher A. Meek
    • Bo ThiessonChristopher A. Meek
    • G06K9/00G06K9/62
    • G06K9/6292G06K9/222
    • The present invention utilizes generic and user-specific features of handwriting samples to provide adaptive handwriting recognition with a minimum level of user-specific enrollment data. By allowing generic and user-specific classifiers to facilitate in a recognition process, the features of a specific user's handwriting can be exploited to quickly ascertain characteristics of handwriting characters not yet entered by the user. Thus, new characters can be recognized without requiring a user to first enter that character as enrollment or “training” data. In one instance of the present invention, processing of generic features is accomplished by a generic classifier trained on multiple users. In another instance of the present invention, a user-specific classifier is employed to modify a generic classifier's classification as required to provide user-specific handwriting recognition.
    • 本发明利用手写样本的通用和用户特定的特征来提供具有最低级别的用户特定注册数据的自适应手写识别。 通过允许通用和用户特定的分类器便于识别过程,可以利用特定用户手写的特征来快速确定用户尚未输入的手写字符的特征。 因此,可以识别新的字符,而不需要用户首先将该字符输入作为注册或“训练”数据。 在本发明的一个实例中,通用特征的处理由对多个用户进行训练的通用分类器来完成。 在本发明的另一个实例中,使用用户特定的分类器根据需要修改通用分类器的分类以提供用户特定的手写识别。