会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 92. 发明授权
    • Selecting encoding types and predictive modes for encoding video data
    • 选择用于编码视频数据的编码类型和预测模式
    • US07792188B2
    • 2010-09-07
    • US11070778
    • 2005-03-01
    • Xin TongXiaochun Nie
    • Xin TongXiaochun Nie
    • H04B1/66
    • H04N19/00H04N19/103H04N19/105H04N19/107H04N19/119H04N19/136H04N19/14H04N19/147H04N19/176H04N19/51H04N19/57H04N19/593
    • In some embodiments, a method of determining encoding type and predictive mode(s) selections for a macroblock of a video frame is provided. In some embodiments, a general method 1) selects the encoding type (16×16 or 4×4) that is initially considered for a macroblock using an encoding type selection algorithm (based on an attribute of the macroblock that is easy to compute), 2) if the 16×16 encoding type is selected in step 1, consider the four 16×16 prediction modes that may be used on the macroblock using conventional methods or an improved 16×16 predictive mode search algorithm based on distortion thresholds, and 3) if the 4×4 encoding type is selected in step 1, select the 4×4 prediction mode to be used for each of the sixteen 4×4 blocks of the macroblock using conventional methods or an improved 4×4 predictive mode search algorithm based on the positional relationships between predictive modes.
    • 在一些实施例中,提供了确定视频帧的宏块的编码类型和预测模式选择的方法。 在一些实施例中,一般方法1)使用编码类型选择算法(基于容易计算的宏块的属性)来选择最初被考虑用于宏块的编码类型(16×16或4×4) 2)如果在步骤1中选择了16×16编码类型,则考虑可以使用传统方法在宏块上使用的四种16×16预测模式或基于失真阈值的改进的16×16预测模式搜索算法,以及3 )如果在步骤1中选择4×4编码类型,则使用常规方法选择要使用的宏块的十六个4×4块中的每一个的4×4预测模式或基于改进的4×4预测模式搜索算法 关于预测模式之间的位置关系。
    • 93. 发明申请
    • METHOD FOR TESSELLATION ON GRAPHICS HARDWARE
    • 图形硬件消除方法
    • US20100214294A1
    • 2010-08-26
    • US12390328
    • 2009-02-20
    • Chen LiJinyu LiXin Tong
    • Chen LiJinyu LiXin Tong
    • G06T15/50
    • G06T17/20
    • An exemplary method for tessellating a primitive of a graphical object includes receiving information for a primitive of a graphical object where the information includes vertex information and an edge factor for each edge of the primitive; based on the received information, dividing the primitive into parts where each part corresponds to at least a portion of an edge of the primitive and at least one vertex of the primitive and where each part has an association with the edge factor of the corresponding edge; for each of the parts, executing a geometry shader on a graphics processing unit (GPU) where the executing includes determining barycentric coordinates for a respective part based in part on its associated edge factor; for each of the parts, outputting the barycentric coordinates to a vertex buffer; and generating a tessellated mesh for the primitive based on the vertex information and the barycentric coordinates of the vertex buffer where the generating includes invoking a draw function of the GPU. Other methods, devices and systems are also disclosed.
    • 用于细分图形对象的原语的示例性方法包括:接收关于图形对象的图元的信息,其中所述信息包括所述图元的每个边缘的顶点信息和边缘因子; 基于所接收的信息,将所述原语划分为每个部分对应于所述图元的边缘的至少一部分和所述图元的至少一个顶点并且每个部分与所述对应边缘的边缘因子具有关联的部分; 对于每个部件,在图形处理单元(GPU)上执行几何着色器,其中所述执行包括:部分地基于其相关联的边缘因子来确定相应零件的重心坐标; 对于每个部件,将重心坐标输出到顶点缓冲器; 以及基于所述顶点信息和所述生成的所述顶点缓冲器的所述重心坐标生成包括调用所述GPU的绘图功能的所述基元生成镶嵌网格。 还公开了其它方法,装置和系统。
    • 94. 发明申请
    • CONTENT BASED CACHE FOR GRAPHICS RESOURCE MANAGEMENT
    • 基于内容的图形资源管理缓存
    • US20100188412A1
    • 2010-07-29
    • US12361216
    • 2009-01-28
    • Chen LiJinyu LiXin TongBarry C. BondGang Chen
    • Chen LiJinyu LiXin TongBarry C. BondGang Chen
    • G09G5/36
    • G06T1/60G06F12/0875G09G2360/121
    • Providing content based cache for graphic resource management is disclosed herein. In some aspects, a portion of a shadow copy of graphics resources is updated from an original copy of the graphics resources when a requested resource is not current. The shadow copy may be dedicated to a graphics processing unit (GPU) while the original copy may be maintained by a central processing unit (CPU). In further aspects, the requested graphics resource in the shadow copy may be compared to a corresponding graphics resource in the original copy when the GPU requests the graphics resource. The comparison may be performed by comparing hashes of each graphics resource and/or by comparing at least a portion of the graphics resources.
    • 本文公开了提供用于图形资源管理的基于内容的缓存。 在一些方面,当所请求的资源不是当前时,图形资源的卷影副本的一部分从图形资源的原始副本被更新。 影子副本可以专用于图形处理单元(GPU),而原始副本可以由中央处理单元(CPU)维护。 在另外的方面,当GPU请求图形资源时,可将影子副本中所请求的图形资源与原始副本中的对应图形资源进行比较。 可以通过比较每个图形资源的哈希和/或通过比较图形资源的至少一部分来执行比较。
    • 97. 发明授权
    • Real-time texture rendering using generalized displacement maps
    • 使用广义位移图进行实时纹理渲染
    • US07184052B2
    • 2007-02-27
    • US10965603
    • 2004-10-13
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • Xi WangXin TongStephen LinBaining GuoHeung-Yeung Shum
    • G06T17/00G06T15/60G09G5/00G06T15/50
    • G06T15/04
    • A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
    • “mesostructure渲染器”使用预先计算的多维“广义位移图”(GDM),以便在任意几何的开放和闭合表面上提供一般非高度场介观结构的实时渲染。 一般来说,GDM表示沿着体积样品内的任何点的任何射线投射到固体介观结构的距离。 给定预先计算的GDM,然后,介观结构渲染器在对象空间和纹理空间中联合计算介观结构可见度,从而实现纹理失真的控制和纹理坐标和阴影的有效计算。 此外,在一个实施例中,使用传统计算机图形硬件的介面结构渲染器使用GDM来渲染具有局部或全局照明的介观结构作为每像素处理,以加速介观结构的实时渲染。 在另一个实施例中,通过根据用户指定的可接受纹理失真的阈值自动减少渲染流水线中的三角形数量来实现进一步加速的介观结构渲染。
    • 98. 发明授权
    • Decoding data from patterned color modulated image regions in a color
image
    • 从彩色图像中的图案化色彩调制图像区域解码数据
    • US6141441A
    • 2000-10-31
    • US162257
    • 1998-09-28
    • Todd A. CassXin Tong
    • Todd A. CassXin Tong
    • G06T1/00G06K9/00
    • G06T1/0028G06T2201/0051G06T2201/0061
    • A technique for decoding message data that has been encoded into a printed color image locates small image regions called signal cells that carry the encoded message. Each signal cell is composed of a spatial pattern of colored subregions that collectively have an overall average color. The colors of the subregions are defined as changes (modulations) to the average color in one or more directions in a multi-dimensional color space. The decoding technique uses a set of valid signal blocks, each of which is a unique pattern of color modulated subregions. There is a valid signal block for each valid message value defined in the coding scheme. The decoding operation first locates the positions of the signal cells in the acquired image and then subtracts the local average color of each signal cell from the cell to produce a received signal block. Then the decoding operation determines which valid signal block each received signal block is by comparing each valid signal block to a received signal block. One implementation of the decoding technique decodes signal cells that have been arranged in the acquired image in a 2D array by synchronizing an imaginary grid-like structure with the most likely position of all of the signal cells. In one embodiment, a color space direction is selected for the color modulations that results in the differently colored subregions of a signal cell being substantially imperceptible to a human viewer, thus making the pattern that carries the message substantially imperceptible in an encoded image.
    • 用于对已经编码成打印的彩色图像的消息数据进行解码的技术定位了称为携带编码消息的信号单元的小图像区域。 每个信号单元由共同具有整体平均颜色的彩色子区域的空间图案组成。 子区域的颜色被定义为在多维颜色空间中的一个或多个方向上的平均颜色的改变(调制)。 解码技术使用一组有效的信号块,每个有效信号块是色调调制子区域的独特模式。 在编码方案中定义的每个有效消息值都有一个有效的信号块。 解码操作首先定位所获取的图像中的信号单元的位置,然后从单元中减去每个信号单元的局部平均颜色以产生接收信号块。 然后,通过将每个有效信号块与接收到的信号块进行比较,解码操作确定每个接收信号块的哪个有效信号块。 解码技术的一个实施方式是通过使假想网格状结构与所有信号单元的最可能的位置同步来对已排列在2D阵列中的所获取的图像中的信号单元进行解码。 在一个实施例中,为颜色调制选择颜色空间方向,导致信号单元的不同颜色的子区域对于人类观察者是基本上不可察觉的,因此使得在编码图像中携带消息基本上不可察觉的图案。