会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • METODO PARA LA PRODUCCION DE HIDRATO DE GAS.
    • MX9707070A
    • 1997-11-29
    • MX9707070
    • 1997-01-07
    • BRITISH GAS PLC
    • WILLIAMS ANDREW RICHARDSMITH TREVOR
    • B01F3/04B01J19/00C10L3/00C10L3/06F17C11/00F25J01/02
    • Una planta para la produccion de hidrato de gas natural que comprende tres etapas (i), (ii) y (iii). La etapa (i) comprende tres recipientes a presion (A1, A2, y A3), la etapa (ii) comprende dos recipientes a presion (A4 y A5) y la etapa (iii) comprende un recipiente a presion (A6). Las condiciones de temperatura y de presion en el recipiente a presion son tales que el hidrato de gas se forma en los recipientes. El hidrato formado es llevado a través de la tuberías (e1, e2, e3, e4, e5 y e6) a partir de los recipientes a presion hasta un distribuidor (34). El agua fría que es tanto el agua reactante como el enfriador del proceso, se provee mediante los medios enfriadores (20) y se suministra simultáneamente a la parte inferior de cada tubería del recipiente a presion (22), el distribuidor (32) y las tuberías (b1, b2, b3, b4, b5 y b6). El gas natural proveniente del suministro (26) es alimentado mediante el conducto (30), el distribuidor (32) y las tuberías (c1, c2 y c3) a las boquillas en la parte inferior de cada recipiente (A1, A2 y A3), en cuyas boquillas las burbujas de gas ascienden a través de las columnas de agua en los recipientes (A1, A2 y A3). El gas sin reaccionar es alimentado desde los recipientes (A1, A2 y A3) a boquillas similares en los recipientes (A4 y A5) desde los cuales se alimenta el gas sin reaccionar a una boquilla en el recipiente (A6) en el cual se lleva el gas sin reaccionar a través del conducto (d6). La velocidad superficial media ascendente del gas es substancialmente la misma en las tres etapas.
    • 3. 发明申请
    • COOLING A FLUID STREAM
    • 冷却流体流
    • WO1996033379A1
    • 1996-10-24
    • PCT/EP1996001638
    • 1996-04-17
    • SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.KLEIN NAGELVOORT, RobertVINK, Kornelis, JanMERCER, Hilary, Ann
    • SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.
    • F25J01/02
    • F25J1/0265F25J1/0022F25J1/0055F25J1/0212F25J1/0216F25J1/0292F25J2245/02
    • Method of cooling a fluid stream which passes through a hot side (1d, 1b, 1c) of a main heat exchanger (1) comprising removing refrigerant from the main heat exchanger (1); compressing refrigerant in a two-stage compressor unit (7) to obtain refrigerant at high pressure; partly condensing (12) the refrigerant to obtain a first two-phase fluid, and separating (13) the first two-phase fluid into a first condensed fraction (15) and a first gaseous fraction (16); cooling the first condensed fraction (15) in an auxiliary heat exchanger (2) to obtain a cooled first condensed fraction (18), cooling the first gaseous fraction (16) in the auxiliary heat exchanger (2) to obtain a second two-phase fluid (26), wherein cooling is provided by liquid evaporating at intermediate pressure in the cold side (2a); separating (28) the second two-phase fluid into a second condensed fraction (33) and a second gaseous fraction (32); allowing part of the second condensed fraction (49) to evaporate in the cold side (2a) of the auxiliary heat exchanger (2); and cooling the remainder of the second condensed fraction (33) in the main heat exchanger (1) to obtain a cooled second condensed fraction, and cooling the second gaseous fraction in the main heat exchanger (1), wherein cooling is provided by liquid evaporating at low pressure in the cold side (1a) of the main heat exchanger (1).
    • 冷却通过主热交换器(1)的热侧(1d,1b,1c)的流体流的方法,包括从主热交换器(1)除去制冷剂; 压缩二级压缩机单元(7)中的制冷剂以获得高压制冷剂; 部分地冷凝(12)制冷剂以获得第一两相流体,并将第一两相流体(13)分离成第一冷凝馏分(15)和第一气体馏分(16); 在辅助热交换器(2)中冷却第一冷凝馏分(15)以获得冷却的第一冷凝馏分(18),冷却辅助热交换器(2)中的第一气态馏分(16)以获得第二两相 流体(26),其中通过在冷侧(2a)中以中间压力蒸发的液体提供冷却; 将所述第二两相流体(28)分离成第二冷凝馏分(33)和第二气体馏分(32); 使得第二冷凝馏分(49)的一部分在辅助热交换器(2)的冷侧(2a)中蒸发; 在主热交换器(1)中冷却第二冷凝馏分(33)的剩余部分,得到冷却后的第二冷凝馏分,并冷却主热交换器(1)中的第二气体馏分,其中通过液体蒸发提供冷却 在主热交换器(1)的冷侧(1a)中的低压下。
    • 8. 发明申请
    • METHOD FOR CONDENSATION OF A GAS
    • 气体浓缩方法
    • WO1997042455A1
    • 1997-11-13
    • PCT/NO1997000117
    • 1997-05-06
    • KVÆRNER MARITIME ASRUMMELHOFF, Carl, JorgenBAKKE, Jorund
    • KVÆRNER MARITIME AS
    • F25J01/02
    • B63J99/00B01D5/0036B01D5/0039
    • A method for condensation of a gas with several fractions, e.g. gas from the tank compartment in an oil tanker during loading. The gas is supplied to a first heat exchanger (4) and cooled therein by means of a coolant. Condensed and non-condensed gas fractions are supplied separately from the heat exchanger (4). For further exploitation of the cooled, non-condensed gas fractions, these and an additional gas are passed separately from the tank compartment to a second heat exchanger (30) where the non-condensed fractions cool the gas and cause condensation of its fractions with a condensation temperature which is less than the temperature of the non-condensed gas fractions from the first heat exchanger.
    • 气体与几种馏分冷凝的方法,例如 加油期间,油罐车内的油箱内有气体。 气体被供应到第一热交换器(4)并通过冷却剂在其中冷却。 冷凝和非冷凝气体馏分与热交换器(4)分开供应。 为了进一步利用冷却的非冷凝气体馏分,将这些和另外的气体从罐室分开通过到第二热交换器(30),其中非冷凝馏分冷却气体并使其馏分与 冷凝温度小于来自第一热交换器的非冷凝气体馏分的温度。
    • 10. 发明公开
    • Helium cooling apparatus
    • HELIUM冷却装置
    • EP0245057A3
    • 1988-09-14
    • EP87303959
    • 1987-05-01
    • KABUSHIKI KAISHA TOSHIBA
    • Kuriyama, Toru c/o Patent DivisionNakagome, Hideki c/o Patent Division
    • F25J01/02F25B09/00
    • H01F6/04F25B2400/17
    • A helium cooling apparatus (l) according to the present invention comprises a refrigerator (2) for cooling a refrigerant. The refrigerator (2l) is con­nected with the proximal end of a transfer line (23), which is used to transport the refrigerant. A port (l8) with a predetermined diameter is formed in a liquid-­helium container (ll) which contains liquid helium. A condensation-heat exchanger (24), which is connected to the distal end of the transfer line (23), is inserted into the liquid-helium container (ll) through the port (l8). A heat-transfer surface of the heat exchanger (24) is formed with a plurality of grooves (50) extend­ing in the gravitational direction. The refrigerant is evaporated in the heat exchanger (24), and condensed liquid helium, adhering to the heat-transfer surface, drops along the grooves (50) when helium gas in the liquid-helium container is cooled to be recondensed. Accordingly, the heat-transfer surface cannot be covered with the condensed liquid helium, so that a wide heat-­transfer area can be secured. Thus, the heat transfer coefficient of the heat exchanger (24) is improved con­siderably. In this arrangement, therefore, the port (l8) of the liquid-helium container (ll), through which the exchanger (24) is inserted into the container (ll), need not have a large diameter.