会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Systems, methods, and computer readable media for maintaining packet data protocol (PDP) context while performing data offload
    • 用于在执行数据卸载时维护分组数据协议(PDP)上下文的系统,方法和计算机可读介质
    • US08665721B2
    • 2014-03-04
    • US13032613
    • 2011-02-22
    • Gibson Soon Teck AngThomas GschwendtnerJie Wang
    • Gibson Soon Teck AngThomas GschwendtnerJie Wang
    • H04L12/26H04H20/71H04W4/00
    • H04L65/1066H04L43/10H04W28/085H04W76/22H04W76/25H04W88/16
    • Systems, methods, and computer readable media for maintaining packet data protocol (PDP) context while performing data offload are disclosed. According to one aspect, a method for maintaining PDP context while performing data offload includes detecting a data offload condition wherein a UE for which a first network node is maintaining a PDP context is sending or receiving data using a data path that does not include the first network node. While the data offload condition exists, packets are sent from a source other than the UE to the first network node so as to cause the first network node to maintain the PDP context for the UE. In one embodiment, a node interposed between the UE and the first network node periodically sends dummy packets or heart beat packets to the first network node on behalf of the UE, which may include packets that appear to come from the UE.
    • 公开了用于在执行数据卸载时维持分组数据协议(PDP)上下文的系统,方法和计算机可读介质。 根据一个方面,一种用于在执行数据卸载时维护PDP上下文的方法包括:检测数据卸载条件,其中第一网络节点正在维护PDP上下文的UE正在使用不包括第一网络的数据路径来发送或接收数据 网络节点。 在存在数据卸载条件的情况下,将数据包从UE之外的源发送到第一网络节点,以使第一网络节点维持UE的PDP上下文。 在一个实施例中,插入在UE和第一网络节点之间的节点周期性地向代表UE的第一网络节点发送虚拟分组或心跳分组,其可以包括看起来来自UE的分组。
    • 9. 发明授权
    • System and method for face verification using video sequence
    • 使用视频序列进行面部验证的系统和方法
    • US08351662B2
    • 2013-01-08
    • US12883931
    • 2010-09-16
    • Jie Wang
    • Jie Wang
    • G06K9/00
    • G06F21/32G06K9/00248G06K9/00281G06K2009/4666
    • Face verification is performed using video data. The two main modules are face image capturing and face verification. In face image capturing, good frontal face images are captured from input video data. A frontal face quality score discriminates between frontal and profile faces. In face verification, a local binary pattern histogram is selected as the facial feature descriptor for its high discriminative power and computational efficiency. Chi-Square (χ2) distance between LBP histograms from two face images are then calculated as a face dissimilarity measure. The decision whether or not two images belong to the same person is then made by comparing the corresponding distance with a pre-defined threshold. Given the fact that more than one face images can be captured per person from video data, several feature based and decision based aggregators are applied to combine pair-wise distances to further improve the verification performance.
    • 使用视频数据进行脸部验证。 两个主要模块是面部图像捕获和面部验证。 在脸部图像捕获中,从输入视频数据中捕获良好的正面脸部图像。 正面和面部面部之间的正面面积评分。 在面部验证中,选择局部二进制图案直方图作为面部特征描述符,用于其高辨识力和计算效率。 然后将来自两张脸部图像的LBP直方图之间的χ2距离(χ2)计算为脸部不相似度。 然后通过将对应的距离与预定义的阈值进行比较来确定两个图像是否属于同一个人。 鉴于每个人可以从视频数据中捕获多于一张的脸部图像,因此应用几种基于特征和基于决策的聚合器来组合成对距离以进一步提高验证性能。
    • 10. 发明授权
    • Automatic face recognition
    • 自动人脸识别
    • US08224042B2
    • 2012-07-17
    • US12402761
    • 2009-03-12
    • Jie Wang
    • Jie Wang
    • G06K9/00
    • G06K9/00281G06K9/00275G06T7/73G06T2207/30201
    • Automatic face recognition. In a first example embodiment, a method for automatic face recognition includes several acts. First, a face pattern and two eye patterns are detected. Then, the face pattern is normalized. Next, the normalized face pattern is transformed into a normalized face feature vector of Gabor feature representations. Then, a difference image vector is calculated. Next, the difference image vector is projected to a lower-dimensional intra-subject subspace extracted from a pre-collected training face database. Then, a square function is applied to each component of the projection. Next, a weighted summation of the squared projection is calculated. Then, the previous four acts are repeated for each normalized gallery image feature vector. Finally, the face pattern in the probe digital image is classified as belonging to the gallery image with the highest calculated weighted summation where the highest calculated weighted summation is above a predefined threshold.
    • 自动人脸识别。 在第一示例性实施例中,一种用于自动面部识别的方法包括若干动作。 首先,检测到脸部图案和两个眼睛图案。 然后,脸部图案被归一化。 接下来,归一化面部图案被转换成Gabor特征表示的归一化面部特征向量。 然后,计算差分图像矢量。 接下来,将差分图像矢量投影到从预先收集的训练面部数据库提取的较低维度的被检体内子空间。 然后,将方形函数应用于投影的每个分量。 接下来,计算平方投影的加权和。 然后,对于每个标准化的画廊图像特征向量重复前面的四个动作。 最后,探测数字图像中的面部图案被归类为属于具有最高计算加权求和的画廊图像,其中最高计算加权求和高于预定阈值。