会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Determining the spatio-temporal and kinematic parameters of a signal receiver and its clock by information fusion
    • 通过信息融合确定信号接收机及其时钟的时空和运动学参数
    • US06542116B1
    • 2003-04-01
    • US09888229
    • 2001-06-22
    • Anant SahaiAndrew ChouWallace MannStefano Casadei
    • Anant SahaiAndrew ChouWallace MannStefano Casadei
    • H04B7185
    • G01S19/24G01S19/23
    • To determine the clock doppler of a signal receiver, sampled data received from a receiver into are divided into data segments of incremental length. The clock doppler is estimated based on correlating each data segment with the expected signal from each satellite, from a set of satellites, that is overhead the receiver. For each data segment, the correlated result of each satellite is used to refine subsequent calculations of the clock doppler of the next overhead satellite. When the clock doppler calculations for a data segment have been performed using all overhead satellites from the set of satellites, then the results for that data segment are used to refine the calculations for the next data segment. If a current bounds for the clock doppler value is within a pre-determined clock doppler bound-width value and a current bounds for a delay value is within a pre-determined delay bound-width value, then a magnitude template is determined using magnitude calculations of the I and Q correlation integrals obtained at various clock doppler values and various delay values.
    • 为了确定信号接收机的时钟多普勒,从接收机接收的采样数据被分成增量长度的数据段。 基于将每个数据段与来自一组卫星的来自每个卫星的预期信号相关联的时钟多普勒估计,这是接收机的开销。 对于每个数据段,每个卫星的相关结果用于细化下一个架空卫星的时钟多普勒的后续计算。 当数据段的时钟多普勒计算已经使用卫星组中的所有开销卫星执行时,该数据段的结果被用于改进下一个数据段的计算。 如果时钟多普勒值的电流限制在预定时钟多普勒边界宽度值内,并且延迟值的电流边界在预定的延迟边界宽度值内,则使用幅度计算确定幅度模板 在各种时钟多普勒值和各种延迟值中获得的I和Q相关积分。
    • 2. 发明申请
    • Estimation of image motion, luminance variations and time-varying image aberrations
    • 图像运动,亮度变化和时变图像像差的估计
    • US20110135220A1
    • 2011-06-09
    • US13022327
    • 2011-02-07
    • Stefano Casadei
    • Stefano Casadei
    • G06K9/36
    • G06K9/4642G06K9/00771G06K9/03G06T7/223G06T2207/10016G06T2207/20021G06T2207/20056
    • A system and method is disclosed to estimate dynamic image features, including genuine image motion, luminance variations, and random time-varying image aberrations. The disclosed invention addresses the issue of simultaneous dependence on spatial coordinates and spatial frequency, which is crucial for the estimation of fast-changing image aberrations such as those caused by atmospheric turbulence. It also addresses the problem of jointly estimating multiple dynamic features such as, for example, time-varying image aberrations and genuine image motion. A novel hybrid model of image aberrations is introduced which combines a frequency domain constraint with linearization in the spatial domain. A search is performed for homogeneous data blocks delimited in space, time and spatial frequency in which image aberrations and other dynamic image features are well described by a low-order model. In one embodiment, a windowed Fourier transform is used to convert the input data into a representation that is suitable for this type of hybrid modeling. A local linear parametrization of dynamic image features is introduced, leading to a fast linear estimation algorithm.
    • 公开了一种用于估计动态图像特征的系统和方法,包括原始图像运动,亮度变化和随机时变图像像差。 所公开的发明解决了对空间坐标和空间频率的同时依赖性的问题,这对于估计由大气湍流引起的快速变化的图像像差至关重要。 它还解决了共同估计多个动态特征的问题,例如时变图像像差和真实图像运动。 引入了一种新颖的图像像差混合模型,其将频域约束与空间域中的线性化相结合。 对以空间,时间和空间频率分隔的均匀数据块进行搜索,其中图像像差和其他动态图像特征由低阶模型良好地描述。 在一个实施例中,使用窗口傅里叶变换将输入数据转换成适合于这种类型的混合建模的表示。 引入动态图像特征的局部线性参数化,导致快速线性估计算法。
    • 3. 发明授权
    • System and method to estimate the location of a receiver in a multi-path environment
    • 用于估计接收机在多路径环境中的位置的系统和方法
    • US07030814B2
    • 2006-04-18
    • US10237556
    • 2002-09-06
    • Jesse StoneStefano CasadeiWallace MannBenjamin Van Roy
    • Jesse StoneStefano CasadeiWallace MannBenjamin Van Roy
    • G01S3/02
    • G01S11/10G01S19/22G01S19/30G01S19/42G01S19/50G01S19/52
    • System and method to determine the location of a receiver in a multipath environment are provided. The received signal is correlated with the reference signals associated with the transmitting sources. Each correlation function is processed to derive various types of signal constraints, such as probability densities and uncertainty regions or intervals. In some embodiments, these constraints are for the code-phases and the Doppler frequencies. These signal constraints are transformed into constraints on the receiver variables and then fused together into a unified receiver constraint. A-priori constraints, such as constraints on the location of the receiver or the timestamp, may be incorporated into the unified receiver constraint. Some embodiments estimate a location based also on the estimated Doppler frequency. The constraints used by the invention are based on models of multipath effects and are geared towards mitigating these effects. In one of these models, a probability density for code-phase is obtained by convolving a gaussian distribution with an exponential distribution that describes the extra delay introduced by multipath. Another approach is based on identifying outliers in the set of code-phases. In other approaches, uncertainty region constraints and probability densities are combined. The present invention achieves faster and more sensitive signal acquisition and higher location accuracy in multipath environment, without compromising performance in other environments.
    • 提供了确定多径环境中接收机位置的系统和方法。 所接收的信号与与发射源相关联的参考信号相关。 处理每个相关函数以导出各种类型的信号约束,例如概率密度和不确定性区域或间隔。 在一些实施例中,这些约束适用于码相位和多普勒频率。 这些信号约束被转换成对接收机变量的约束,然后融合在一起成为统一的接收机约束。 诸如对接收机的位置或时间戳的限制的先验约束可以被并入到统一接收机约束中。 一些实施例还基于估计的多普勒频率估计位置。 本发明使用的约束基于多径效应的模型,并且旨在减轻这些影响。 在这些模型之一中,代码相位的概率密度通过使用描述由多径引入的额外延迟的指数分布进行卷积高斯分布来获得。 另一种方法是基于在一组代码阶段中识别异常值。 在其他方法中,组合不确定性区域约束和概率密度。 本发明在多路径环境中实现更快,更灵敏的信号采集和更高的定位精度,而不会影响其他环境中的性能。
    • 5. 发明授权
    • Hierarchical method and system for pattern recognition and edge detection
    • 模式识别和边缘检测的分层方法和系统
    • US07738705B2
    • 2010-06-15
    • US11167042
    • 2005-06-23
    • Stefano Casadei
    • Stefano Casadei
    • G06K9/36
    • G06K9/6206G06K9/6282G06T7/12G06T2207/20016G06T2207/20164
    • A method and a system for pattern recognition utilizes an ensemble of reference patterns to represent the possible instances of the models to be recognized; constructs a hierarchy of estimators to simplify and enhance the recognition of the models of interest; approximates complex reference patterns with linear compositions of simpler patterns; fragments complex patterns into local patterns so that interference between the local patterns is sufficiently small for linearization methods to be applicable; constructs estimators during an offline stage to offload calculations from the online signal processing stage; designs model estimators based on optimization principles to enhance performance and to provide performance metrics for the estimated model instances; generates a hierarchy of reference descriptors during the offline stage, which are used for the design and construction of the model estimators. Specific examples are provided for the recognition of image features such as edges and junctions.
    • 用于模式识别的方法和系统利用参考模式的集合来表示要识别的模型的可能实例; 构建估计器的层次结构,以简化和增强感兴趣的模型的识别; 用简单图案的线性组合近似复杂参考图; 将复杂模式分段为局部模式,使得局部模式之间的干扰足够小,以使线性化方法适用; 在离线阶段构建估计器,以从在线信号处理阶段卸载计算; 基于优化原则设计模型估计器,以提高性能并为估计的模型实例提供性能指标; 在离线阶段生成参考描述符的层次结构,用于模型估计的设计和构建。 提供了用于识别图像特征(例如边缘和结)的具体示例。
    • 6. 发明申请
    • Estimation of image motion, luminance variations and time-varying image aberrations
    • 图像运动,亮度变化和时变图像像差的估计
    • US20080069459A1
    • 2008-03-20
    • US11857842
    • 2007-09-19
    • Stefano Casadei
    • Stefano Casadei
    • G06K9/36
    • G06K9/4642G06K9/00771G06T7/223G06T2207/10016G06T2207/20021G06T2207/20056
    • A method is disclosed to jointly estimate genuine image motion, luminance variations, and time-varying image aberrations. The method takes into account in a natural way the dependence of image aberrations both on spatial coordinates and spatial frequency. A novel hybrid model of image aberrations is introduced which combines a frequency domain constraint with linearization in the spatial domain. A search is performed for homogeneous data blocks delimited in space, time and spatial frequency in which image aberrations are well described by a low-order model. A windowed Fourier transform is used to convert the input data into a representation that is suitable for this type of hybrid modeling. A local linear parametrization of image changes is introduced, leading to a fast linear estimation algorithm.
    • 公开了一种共同估计真实图像运动,亮度变化和时变图像像差的方法。 该方法以自然的方式考虑图像像差对空间坐标和空间频率的依赖性。 引入了一种新颖的图像像差混合模型,其将频域约束与空间域中的线性化相结合。 对以空间,时间和空间频率分隔的均匀数据块进行搜索,其中图像像差由低阶模型良好地描述。 使用窗口傅里叶变换将输入数据转换为适合于这种类型的混合建模的表示。 引入图像变化的局部线性参数化,导致快速的线性估计算法。
    • 7. 发明申请
    • Hierarchical optimization method and system for pattern recognition and edge detection
    • 模式识别和边缘检测的分层优化方法和系统
    • US20060002609A1
    • 2006-01-05
    • US11167042
    • 2005-06-23
    • Stefano Casadei
    • Stefano Casadei
    • G06K9/68
    • G06K9/6206G06K9/6282G06T7/12G06T2207/20016G06T2207/20164
    • A method and a system for pattern recognition utilizes an ensemble of reference patterns to represent the possible instances of the models to be recognized; constructs a hierarchy of estimators to simplify and enhance the recognition of the models of interest; approximates complex reference patterns with linear compositions of simpler patterns; fragments complex patterns into local patterns so that interference between the local patterns is sufficiently small for linearization methods to be applicable; constructs estimators during an offline stage to offload calculations from the online signal processing stage; designs model estimators based on optimization principles to enhance performance and to provide performance metrics for the the estimated model instances; generates a hierarchy of reference descriptors during the offline stage, which are used for the design and construction of the model estimators. Specific examples are provided for the recognition of image features such as edges and junctions.
    • 用于模式识别的方法和系统利用参考模式的集合来表示要识别的模型的可能实例; 构建估计器的层次结构,以简化和增强感兴趣的模型的识别; 用简单图案的线性组合近似复杂参考图; 将复杂模式分段为局部模式,使得局部模式之间的干扰足够小,以使线性化方法适用; 在离线阶段构建估计器,以从在线信号处理阶段卸载计算; 基于优化原则设计模型估计器,以提高性能并为估计的模型实例提供性能指标; 在离线阶段生成参考描述符的层次结构,用于模型估计的设计和构建。 提供了用于识别图像特征(例如边缘和结)的具体示例。