会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEMS AND METHODS EMPLOYING COOPERATIVE OPTIMIZATION-BASED DIMENSIONALITY REDUCTION
    • 基于合作优化的尺寸减少的系统和方法
    • WO2010017300A1
    • 2010-02-11
    • PCT/US2009/052860
    • 2009-08-05
    • HALLIBURTON ENERGY SERVICES, INC.CHEN, DingdingHAMID, SyedDIX, Michael, C.
    • CHEN, DingdingHAMID, SyedDIX, Michael, C.
    • G01V1/40
    • G01V1/34G06N3/126G06T11/206
    • Dimensionality reduction systems and methods facilitate visualization, understanding, and interpretation of high-dimensionality data sets, so long as the essential information of the data set is preserved during the dimensionality reduction process. In some of the disclosed embodiments, dimensionality reduction is accomplished using clustering, evolutionary computation of low-dimensionality coordinates for cluster kernels, particle swarm optimization of kernel positions, and training of neural networks based on the kernel mapping. The fitness function chosen for the evolutionary computation and particle swarm optimization is designed to preserve kernel distances and any other information deemed useful to the current application of the disclosed techniques, such as linear correlation with a variable that is to be predicted from future measurements. Various error measures are suitable and can be used.
    • 只要在维度降低过程中保留数据集的基本信息,尺寸减小系统和方法便于高维数据集的可视化,理解和解释。 在一些所公开的实施例中,使用聚类,集群内核的低维度坐标的进化计算,核心位置的粒子群优化以及基于内核映射的神经网络的训练来实现维数降低。 为进化计算和粒子群优化选择的适应度函数被设计为保留核心距离以及被认为对所公开技术的当前应用有用的任何其它信息,例如与将来的测量将要预测的变量的线性相关。 各种错误措施是合适的,可以使用。