会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Error detection and correction for encoded data
    • 编码数据的错误检测和校正
    • US07653862B2
    • 2010-01-26
    • US11154978
    • 2005-06-15
    • Martin HassnerRajesh Koul
    • Martin HassnerRajesh Koul
    • H03M13/00G11C29/00
    • G06F11/1008G11B20/10527G11B20/1833G11B2020/10759G11B2220/2516H03M13/19
    • Embodiments of the present invention provide techniques for detecting and correcting encoded data. In one embodiment, a system for detecting and correcting errors in a plurality of data bits comprises a static memory configured to store a plurality of data bits; a systematic encoder configured to convert the plurality of data bits into a codeword; a systematic parity check encoder configured to convert the codeword into a syndrome; and a syndrome decoder configured to evaluate the syndrome based on preset criteria used to determine whether the syndrome corresponds to an uncorrectable error. A binary [16, 8, 5] code is used to encode the plurality of data bits.
    • 本发明的实施例提供了用于检测和校正编码数据的技术。 在一个实施例中,用于检测和校正多个数据位中的错误的系统包括被配置为存储多个数据位的静态存储器; 被配置为将所述多个数据位转换成码字的系统编码器; 被配置为将所述码字转换为综合征的系统奇偶校验编码器; 以及校正器解码器,其被配置为基于用于确定所述综合征是否对应于不可校正误差的预设标准来评估所述综合征。 二进制[16,8,5]代码用于对多个数据位进行编码。
    • 6. 发明申请
    • Decoding Error Correction Codes Using A Modular Single Recursion Implementation
    • 使用模块化单递归执行解码纠错码
    • US20090063938A1
    • 2009-03-05
    • US12270737
    • 2008-11-13
    • Martin HassnerKirk Hwang
    • Martin HassnerKirk Hwang
    • H03M13/07G06F11/10
    • H03M13/1525H03M13/1515
    • Systems and methods are provided for performing error correction decoding. The coefficients of the error locator polynomial are iteratively determined for each codeword using a modular implementation of a single recursion key-equation solver algorithm. According to this implementation, modules are used to calculate the current and previous coefficients of the error locator polynomial. One module is used for each correctable error. The modular single recursion implementation is programmable, because the number of modules can be easily changed to correct any number of correctable errors. Galois field tower arithmetic can be used to calculate the inverse of an error term. Galois field tower arithmetic greatly reduces the size of the inversion unit. The latency time can be reduced by placing the computations of the inverse error term outside the critical path of the error locator polynomial algorithm.
    • 提供了用于执行纠错解码的系统和方法。 使用单个递归密钥方程求解算法的模块化实现,针对每个码字迭代确定误差定位多项式的系数。 根据该实现,使用模块来计算误差定位器多项式的当前系数和先前系数。 一个模块用于每个可纠正的错误。 模块化单递归实现是可编程的,因为可以轻松更改模块数量以更正任何数量的可纠正错误。 伽罗瓦域塔算术可用于计算误差项的倒数。 伽罗瓦域塔算术大大减小了反演单元的大小。 通过将反向误差项的计算置于误差定位多项式算法的关键路径之外,可以减少延迟时间。
    • 7. 发明申请
    • Decoding error correction codes using a modular single recursion implementation
    • 使用模块化单递归实现解码纠错码
    • US20070061688A1
    • 2007-03-15
    • US11207474
    • 2005-08-18
    • Martin HassnerKirk Hwang
    • Martin HassnerKirk Hwang
    • H03M13/00
    • H03M13/1525H03M13/1515
    • Systems and methods are provided for performing error correction decoding. The coefficients of the error locator polynomial are iteratively determined for each codeword using a modular implementation of a single recursion key-equation solver algorithm. According to this implementation, a plurality of modules are used to calculate the current and previous coefficients of the error locator polynomial. One module is used for each correctable error. The modular single recursion implementation is programmable, because the number of modules can be easily changed to correct any number of correctable errors. Galois field tower arithmetic can be used to calculate the inverse of an error term. Galois field tower arithmetic greatly reduces the size of the inversion unit. The latency time can be reduced by placing the computations of the inverse error term outside the critical path of the error locator polynomial algorithm.
    • 提供了用于执行纠错解码的系统和方法。 使用单个递归密钥方程求解算法的模块化实现,针对每个码字迭代确定误差定位多项式的系数。 根据该实现,使用多个模块来计算误差定位多项式的当前系数和先前系数。 一个模块用于每个可纠正的错误。 模块化单递归实现是可编程的,因为可以轻松更改模块数量以更正任何数量的可纠正错误。 伽罗瓦域塔算术可用于计算误差项的倒数。 伽罗瓦域塔算术大大减小了反演单元的大小。 通过将反向误差项的计算置于误差定位多项式算法的关键路径之外,可以减少延迟时间。