基本信息:
- 专利标题: 一种交通状态预测方法、装置、设备、介质及程序
- 专利标题(英):TRAFFIC STATE PREDICTION METHOD AND APPARATUS, AND DEVICE, MEDIUM AND PROGRAM
- 申请号:PCT/CN2022/130549 申请日:2022-11-08
- 公开(公告)号:WO2023088131A1 公开(公告)日:2023-05-25
- 发明人: 鱼一帆
- 申请人: 中移(上海)信息通信科技有限公司 , 中移智行网络科技有限公司 , 中国移动通信集团有限公司
- 申请人地址: 中国上海市浦东新区新金桥路27号10号楼, Shanghai 201206; 中国上海市浦东新区新金桥路27号10号楼, Shanghai 200120; 中国北京市西城区金融大街29号, Beijing 100032
- 专利权人: 中移(上海)信息通信科技有限公司,中移智行网络科技有限公司,中国移动通信集团有限公司
- 当前专利权人: 中移(上海)信息通信科技有限公司,中移智行网络科技有限公司,中国移动通信集团有限公司
- 当前专利权人地址: 中国上海市浦东新区新金桥路27号10号楼, Shanghai 201206; 中国上海市浦东新区新金桥路27号10号楼, Shanghai 200120; 中国北京市西城区金融大街29号, Beijing 100032
- 代理机构: 北京派特恩知识产权代理有限公司
- 优先权: CN202111382079.5 2021-11-22
- 主分类号: G06F30/27
- IPC分类号: G06F30/27 ; G06N3/04 ; G06N3/08
A traffic state prediction method and apparatus, and a device, a medium and a program, which relate to the technical field of intelligent traffic. The method comprises: generating a plurality of chromosome units (101), wherein each chromosome unit is used for representing a type of spatial-temporal convolutional network model; respectively calculating, on the basis of a sample set, a loss value of the spatial-temporal convolutional network model corresponding to each of the plurality of chromosome units (102); according to the loss values of spatial-temporal convolutional network models corresponding to the plurality of chromosome units, updating the plurality of chromosome units, and returning to execute the step of respectively calculating, on the basis of a sample set, a loss value of the spatial-temporal convolutional network model corresponding to each of the plurality of chromosome units until a target chromosome unit that meets a preset condition is determined (103); on the basis of a spatial-temporal convolutional network model corresponding to the target chromosome unit, determining a pre-trained spatial-temporal convolutional network model (104); and on the basis of the pre-trained spatial-temporal convolutional network model, predicting a traffic state (105). By means of the method, the accuracy of predicting a traffic state can be improved.
IPC结构图谱:
G06F30/27 | 使用机器学习,例如人工智能,神经网络,支持向量机 |