基本信息:
- 专利标题: 用于识别机械装置或机械部件中的异常的方法及装置
- 专利标题(英):METHOD AND APPARATUS FOR IDENTIFYING ABNORMALITIES IN MECHANICAL APPARATUS OR MECHANICAL COMPONENT
- 申请号:PCT/CN2021/070457 申请日:2021-01-06
- 公开(公告)号:WO2022147684A1 公开(公告)日:2022-07-14
- 发明人: 邓实 DENG, Shi , 王民刚 WANG, Mingang
- 申请人: 罗伯特·博世有限公司 , 邓实 , 王民刚
- 申请人地址: 德国斯图加特邮政信箱300220, Stuttgart 70442; 中国上海市长宁区福泉北路333号, Shanghai 200335; 中国上海市长宁区福泉北路333号, Shanghai 200335
- 专利权人: 罗伯特·博世有限公司,邓实,王民刚
- 当前专利权人: 罗伯特·博世有限公司,邓实,王民刚
- 当前专利权人地址: 德国斯图加特邮政信箱300220, Stuttgart 70442; 中国上海市长宁区福泉北路333号, Shanghai 200335; 中国上海市长宁区福泉北路333号, Shanghai 200335
- 代理机构: 永新专利商标代理有限公司
- 主分类号: G01M13/00
- IPC分类号: G01M13/00 ; G06K9/00 ; G06Q10/00 ; G06Q50/00 ; G06N3/00
A method (200) for identifying abnormalities in a mechanical apparatus or a mechanical component, comprising at least the following steps of: i) acquiring at least two types of undersampled measurement data collected in or on a mechanical apparatus or mechanical component, wherein the at least two types of undersampled measurement data are different from each other in any one or both of the following aspects: a delay △t relative to the occurrence time t0 of a trigger event, and a used frequency fs; and ii) identifying abnormalities in the mechanical apparatus or mechanical component on the basis of the acquired at least two types of undersampled measurement data by using a machine learning-based abnormality identification model used to identify abnormalities in the mechanical apparatus or mechanical component. Further, provided are a method for training the machine learning-based abnormality identification model, a computer apparatus, a computer program product, and a detection apparatus. The computer apparatus comprises a processor (10) and a computer scale storage medium (20) communicatively connected to the processor (10), so as to form a cost-effective and reliable fault diagnosis or predictive maintenance solution.