发明申请
WO2019155064A1 DATA COMPRESSION USING JOINTLY TRAINED ENCODER, DECODER, AND PRIOR NEURAL NETWORKS
审中-公开
基本信息:
- 专利标题: DATA COMPRESSION USING JOINTLY TRAINED ENCODER, DECODER, AND PRIOR NEURAL NETWORKS
- 申请号:PCT/EP2019/053322 申请日:2019-02-11
- 公开(公告)号:WO2019155064A1 公开(公告)日:2019-08-15
- 发明人: MENICK, Jacob Lee , GRAVES, Alexander Benjamin
- 申请人: DEEPMIND TECHNOLOGIES LIMITED
- 申请人地址: 6 Pancras Square London N1C 4AG GB
- 专利权人: DEEPMIND TECHNOLOGIES LIMITED
- 当前专利权人: DEEPMIND TECHNOLOGIES LIMITED
- 当前专利权人地址: 6 Pancras Square London N1C 4AG GB
- 代理机构: KUNZ, Herbert
- 优先权: US62/628,908 20180209
- 主分类号: G06N3/04
- IPC分类号: G06N3/04 ; G06N3/08 ; G06N3/00 ; G10L19/00 ; H03M7/40
摘要:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an encoder neural network, a decoder neural network, and a prior neural network, and using the trained networks for generative modeling, data compression, and data decompression. In one aspect, a method comprises: providing a given observation as input to the encoder neural network to generate parameters of an encoding probability distribution; determining an updated code for the given observation; selecting a code that is assigned to an additional observation; providing the code assigned to the additional observation as input to the prior neural network to generate parameters of a prior probability distribution; sampling latent variables from the encoding probability distribution; providing the latent variables as input to the decoder neural network to generate parameters of an observation probability distribution; and determining gradients of a loss function.
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06N | 基于特定计算模型的计算机系统 |
------G06N3/00 | 基于生物学模型的计算机系统 |
--------G06N3/02 | .采用神经网络模型 |
----------G06N3/04 | ..体系结构,例如,互连拓扑 |