发明申请
WO2018063773A1 USING CLASSIFIED TEXT AND DEEP LEARNING ALGORITHMS TO IDENTIFY RISK AND PROVIDE EARLY WARNING
审中-公开
基本信息:
- 专利标题: USING CLASSIFIED TEXT AND DEEP LEARNING ALGORITHMS TO IDENTIFY RISK AND PROVIDE EARLY WARNING
- 专利标题(中):使用分类文本和深度学习算法识别风险并提供早期警告
- 申请号:PCT/US2017/050555 申请日:2017-09-07
- 公开(公告)号:WO2018063773A1 公开(公告)日:2018-04-05
- 发明人: BRESTOFF, Nelson
- 申请人: INTRASPEXION INC.
- 申请人地址: 4109 Palo Alto Road Sequim, WA 98382 US
- 专利权人: INTRASPEXION INC.
- 当前专利权人: INTRASPEXION INC.
- 当前专利权人地址: 4109 Palo Alto Road Sequim, WA 98382 US
- 代理机构: ILOPUTAIFE, Obi
- 优先权: US15/277,458 20160927
- 主分类号: G06N3/08
- IPC分类号: G06N3/08 ; G06Q10/06
摘要:
Deep learning is used to identify specific, potential risks to an enterprise (of which litigation is the prime example) while such risks are still internal electronic communications. The system involves mining and using existing classifications of data (e.g., from a litigation database) to train one or more deep learning algorithms, and then examining the internal electronic communications with the trained algorithm, to generate a scored output that will enable enterprise personnel to be alerted to risks and take action in time to prevent the risks from resulting in harm to the enterprise or others.
摘要(中):
深度学习用于识别企业的具体潜在风险(以诉讼为例),而此类风险仍为内部电子通信。 该系统涉及挖掘和利用现有的数据分类(例如来自诉讼数据库)来训练一种或多种深度学习算法,然后使用训练的算法检查内部电子通信,以生成评分输出,以使企业人员能够 注意风险并及时采取行动,以防止风险造成对企业或其他人的损害。 p>