
基本信息:
- 专利标题: Systems and methods for discovering partially periodic event patterns
- 专利标题(中):用于发现部分周期性事件模式的系统和方法
- 申请号:US09739432 申请日:2000-12-18
- 公开(公告)号:US20020107841A1 公开(公告)日:2002-08-08
- 发明人: Joseph L. Hellerstein , Sheng Ma
- 主分类号: G06F007/00
- IPC分类号: G06F007/00 ; G06F017/30 ; G06E001/00 ; G06E003/00 ; G06G007/00 ; G06F015/18
摘要:
Systems and methods for discovering partially periodic temporal associations, referred to herein as p-patterns, are provided. For example, a p-pattern in computer networks might comprise five repetitions every 30 seconds of a port-down event followed by a port-up event, which in turn is followed by a random gap until the next five repetitions of these events. In one embodiment, the present invention comprises: (i) a normalization step to convert application-oriented event data into an application-independent normalized table; (ii) an algorithm for finding significant period lengths from normalized events (e.g., 30 seconds) using a Chi-squared test; and (iii) an algorithm for finding a partially periodic temporal association (e.g., port-down followed by port-up) given a know period.
摘要(中):
提供了用于发现部分周期性时间关联的系统和方法,这里称为p模式。 例如,计算机网络中的p模式可能包含五次重复,每隔30秒进行一次停机事件,随后是一个端口事件,随后又是一个随机的间隙,直到这些事件的下一个5次重复。 在一个实施例中,本发明包括:(i)将面向应用的事件数据转换成与应用无关的标准化表的归一化步骤; (ii)使用卡方检验从归一化事件(例如,30秒)发现重要的周期长度的算法; 以及(iii)用于在给定知道周期的情况下找到部分周期性时间关联(例如,关闭后端口)的算法。