
基本信息:
- 专利标题: 一种基于最小模糊散度的图像协同分割方法
- 专利标题(英):Image collaborative segmentation method based on minimum fuzzy divergence
- 申请号:CN201911097587.1 申请日:2019-11-12
- 公开(公告)号:CN110853064A 公开(公告)日:2020-02-28
- 发明人: 王世刚 , 赵雪松 , 韦健 , 赵岩
- 申请人: 吉林大学
- 申请人地址: 吉林省长春市前进大街2699号
- 专利权人: 吉林大学
- 当前专利权人: 吉林大学
- 当前专利权人地址: 吉林省长春市前进大街2699号
- 代理机构: 长春吉大专利代理有限责任公司
- 代理人: 邵铭康
- 主分类号: G06T7/12
- IPC分类号: G06T7/12 ; G06T7/181 ; G06T7/194 ; G06K9/46 ; G06K9/62
The invention discloses an image collaborative segmentation method based on minimum fuzzy divergence, and belongs to the technical field of image processing and computer vision. According to the method, the segmentation effect is judged through an Intersection over Union (IOU) value, and the method comprises the following steps: 1, acquiring an image segmentation data set, and performing conversion from an RGB space to an LAB space; 2, constructing a fuzzy divergence formula by using a Gamma-type membership function, constructing a new energy function, and performing curve evolution accordingto a minimum fuzzy divergence criterion to achieve a good segmentation effect. The target edge is better processed by using the fuzzy set theory. The color information of one image is introduced intothe energy function of the other image, so that the robustness of initial curve replacement can be enhanced. An optimal segmentation effect is achieved by solving a local minimum value of an energy function by utilizing a region-based active contour model. The established model can reduce the complexity of calculation time, and can be applied to early-stage work of an integrated imaging three-dimensional display system.
公开/授权文献:
- CN110853064B 一种基于最小模糊散度的图像协同分割方法 公开/授权日:2022-03-25