![一种基于E-LSTM的汽轮机健康状态预测方法](/CN/2019/1/167/images/201910837861.jpg)
基本信息:
- 专利标题: 一种基于E-LSTM的汽轮机健康状态预测方法
- 专利标题(英):Steam turbine health state prediction method based on E-LSTM
- 申请号:CN201910837861.8 申请日:2019-09-05
- 公开(公告)号:CN110689171A 公开(公告)日:2020-01-14
- 发明人: 孟宇龙 , 许铭文 , 徐东 , 张子迎 , 王志文 , 陈云飞 , 王鑫 , 关智允
- 申请人: 哈尔滨工程大学
- 申请人地址: 黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室
- 专利权人: 哈尔滨工程大学
- 当前专利权人: 哈尔滨工程大学
- 当前专利权人地址: 黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06N3/04
The invention provides a steam turbine health state prediction method based on E-LSTM. The method comprises steps of collecting turbine operation data from a sensor, and preprocessing the turbine operation data; feeding the preprocessed data into an LSTM network, and performing iterative training for multiple times; inputting a plurality of trained model parameters into a genetic algorithm to serve as an initial population, operating the genetic algorithm, and selecting a model parameter with an optimal effect; performing generalization performance verification on the optimal model by using more steam turbine operation data; and predicting the test data set according to the optimal model parameters, and evaluating model errors. According to the method, the accuracy of model prediction canbe improved, over-fitting can be avoided, and multivariate linear regression prediction can be realized, so that the prediction model has a better fitting effect on real data, the error of manual monitoring can be greatly reduced, the fault diagnosis efficiency can be improved, and the occurrence of faults can be informed in advance. The method can be widely applied to state management of variousfirepower and nuclear power plants and even steam turbines of ships.