
基本信息:
- 专利标题: 一种基于时空分位数回归的区域风电预测方法及系统
- 专利标题(英):Regional wind power prediction method and system based on space-time quantile regression
- 申请号:CN201910802636.0 申请日:2019-08-28
- 公开(公告)号:CN110648014A 公开(公告)日:2020-01-03
- 发明人: 杨明 , 于一潇 , 韩学山 , 杨佳峻 , 韩月 , 段方维
- 申请人: 山东大学 , 国网辽宁省电力有限公司电力科学研究院 , 国家电网有限公司 , 中国电力科学研究院有限公司
- 申请人地址: 山东省济南市历下区经十路17923号
- 专利权人: 山东大学,国网辽宁省电力有限公司电力科学研究院,国家电网有限公司,中国电力科学研究院有限公司
- 当前专利权人: 山东大学,国网辽宁省电力有限公司电力科学研究院,国家电网有限公司,中国电力科学研究院有限公司
- 当前专利权人地址: 山东省济南市历下区经十路17923号
- 代理机构: 济南圣达知识产权代理有限公司
- 代理人: 李琳
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06Q50/06 ; G06N3/04 ; G06F17/18
The invention provides a regional wind power prediction method and system based on space-time quantile regression. The method comprises the following steps: collecting the operation and numerical weather prediction data of a plurality of wind power plants in a preset time period, converting the collected data into a feature map, and building a training set, a verification set and a test set; establishing a space-time quantile regression model, and training and optimizing the model by utilizing the training set, the training set, the verification set and the test set; acquiring operation data and environment data of each wind power plant in real time, and predicting regional wind power generation in a certain time period in the future according to the optimized space-time quantile regression model. According to the invention, short-term non-parameterized probability prediction is carried out on regional wind power through the space-time quantile regression model; the selection problem of explanatory variables in regional wind power prediction with large input information is solved, the prediction accuracy and reliability are greatly improved, and a specific solution is provided forregional wind power generation probability prediction with big data.
公开/授权文献:
- CN110648014B 一种基于时空分位数回归的区域风电预测方法及系统 公开/授权日:2022-04-15