
基本信息:
- 专利标题: 一种基于卷积神经网络信息融合的水电机组故障诊断方法
- 专利标题(英):Hydropower unit fault diagnosis method based on convolution neural network information fusion
- 申请号:CN201910396050.9 申请日:2019-05-13
- 公开(公告)号:CN110297479A 公开(公告)日:2019-10-01
- 发明人: 陈启卷 , 张长伟 , 吕延春 , 李德红 , 王卫玉 , 段文华 , 舒锦宏 , 包震洲 , 郭定宇 , 刘宛莹
- 申请人: 国网浙江省电力有限公司紧水滩水力发电厂 , 武汉大学
- 申请人地址: 浙江省丽水市云和县紧水滩镇
- 专利权人: 国网浙江省电力有限公司紧水滩水力发电厂,武汉大学
- 当前专利权人: 国网浙江省电力有限公司紧水滩水力发电厂,武汉大学
- 当前专利权人地址: 浙江省丽水市云和县紧水滩镇
- 代理机构: 杭州杭诚专利事务所有限公司
- 代理人: 尉伟敏; 占宇
- 主分类号: G05B23/02
- IPC分类号: G05B23/02
The invention discloses a hydropower unit fault diagnosis method based on convolution neural network information fusion. The method comprises the steps of: obtaining stability data at low, medium andhigh rotation speeds in the start-up process of a unit; respectively pre-processing the unit data at low, medium and high rotation speeds; respectively dividing the unit data at low, medium and high rotation speeds into a training set and a test set of convolution neural networks at corresponding rotation speeds; drawing a unit axis trajectory chart by respectively using the unit data at low, medium and high rotation speeds, furthermore, converting an axis trajectory image into a grey-scale image, and forming a matrix by contrasting the remaining information to be fused with the axis trajectory grey-scale image; respectively establishing the convolution neural networks by using the unit data at low, medium and high rotation speeds; respectively training the corresponding convolution neuralnetworks by using the unit data at low, medium and high rotation speeds; and, performing unit fault diagnosis by using the trained three networks, and fusing diagnosis results, so that the final conclusion is formed. By means of the hydropower unit fault diagnosis method based on convolution neural network information fusion in the invention, the hydropower unit fault diagnosis accuracy can be effectively improved.
公开/授权文献:
- CN110297479B 一种基于卷积神经网络信息融合的水电机组故障诊断方法 公开/授权日:2020-12-29
IPC结构图谱:
G | 物理 |
--G05 | 控制;调节 |
----G05B | 一般的控制或调节系统;这种系统的功能单元;用于这种系统或单元的监视或测试装置 |
------G05B23/00 | 控制系统或其部件的检验或监视 |
--------G05B23/02 | .电检验式监视 |