
基本信息:
- 专利标题: 一种基于机器学习模型的电力风险客户筛选方法
- 专利标题(英):Power risk customer screening method based on machine learning model
- 申请号:CN201910164599.5 申请日:2019-03-05
- 公开(公告)号:CN110046796A 公开(公告)日:2019-07-23
- 发明人: 张宏达 , 王伟峰 , 陶晖 , 李熊 , 李磊 , 劳琦江 , 严华江 , 卢恩泽 , 张江伟
- 申请人: 国网浙江省电力有限公司 , 浙江华云信息科技有限公司 , 国家电网有限公司
- 申请人地址: 浙江省杭州市西湖区黄龙路8号
- 专利权人: 国网浙江省电力有限公司,浙江华云信息科技有限公司,国家电网有限公司
- 当前专利权人: 国网浙江省电力有限公司,浙江华云信息科技有限公司,国家电网有限公司
- 当前专利权人地址: 浙江省杭州市西湖区黄龙路8号
- 代理机构: 浙江翔隆专利事务所
- 代理人: 王晓燕
- 主分类号: G06Q10/06
- IPC分类号: G06Q10/06 ; G06Q50/06 ; G06N20/00 ; G06K9/62
The invention discloses a power risk customer screening method based on a machine learning model, and belongs to the technical field of power. At present, in power customer management, customers withabnormal electricity consumption are always important concerns by enterprises, but the power enterprises always lack effective means to identify the customers with abnormal electricity consumption, and in the past, the efficiency is low and the customers with abnormal electricity consumption cannot be directly screened from mass customers by mainly observing the electricity consumption load curveof a single customer. The method comprises the following steps: step 1, acquiring electricity consumption data of a client; 2, designing a power outlier user identification index system; step 3, establishing a power outlier user identification model based on a local abnormal factor algorithm LOF; and step 4, applying the model to realize automatic screening of the power outlier customers. Based ona machine learning algorithm, abnormal electricity consumption customers can be automatically identified, safe operation of a power grid is guaranteed, economic loss of the power grid is avoided, andthe power grid management level is improved.