
基本信息:
- 专利标题: 一种基于经验动态建模的风电功率超短期概率预测方法及系统
- 专利标题(英):A wind power ultra-short term probability prediction method and system based on empirical dynamic modeling
- 申请号:CN201910009512.7 申请日:2019-01-04
- 公开(公告)号:CN109886452A 公开(公告)日:2019-06-14
- 发明人: 程艳 , 王士柏 , 杨明 , 孙树敏 , 苏建军 , 孟瑜 , 王楠 , 张兴友 , 王玥娇 , 滕玮 , 于芃 , 李广磊 , 魏大钧 , 王尚斌 , 刘守刚 , 王勃 , 赵元春 , 马嘉翼
- 申请人: 国网山东省电力公司电力科学研究院 , 山东大学 , 山东鲁能软件技术有限公司 , 国家电网有限公司
- 申请人地址: 山东省济南市市中区望岳路2000号
- 专利权人: 国网山东省电力公司电力科学研究院,山东大学,山东鲁能软件技术有限公司,国家电网有限公司
- 当前专利权人: 国网山东省电力公司电力科学研究院,山东大学,山东鲁能软件技术有限公司,国家电网有限公司
- 当前专利权人地址: 山东省济南市市中区望岳路2000号
- 代理机构: 北京智绘未来专利代理事务所
- 代理人: 张红莲
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06F17/50 ; G06Q50/06
The invention discloses a wind power ultra-short term probability prediction method and system based on empirical dynamic modeling, and the method comprises the steps of carrying out the standard normalization processing on a time sequence of a to-be-predicted quantity, and carrying out the nonlinear aggregation degree calculation of data after the standard normalization processing, so as to inspect the nonlinear degree of a given dynamic system; calculating an optimal embedding dimension E and delay time tau by adopting a particle swarm optimization algorithm; further, performing phase spacereconstruction on the time sequence of the to-be-predicted quantity; and constructing an empirical dynamic model, and predicting the given dynamic system in the reconstruction phase space by adoptinga simplex projection method to obtain a prediction result of the to-be-predicted quantity. The prediction result shows that the wind power ultra-short term probability prediction method based on empirical dynamic modeling can achieve objective description of the wind power generation dynamic process completely according to data, and the effectiveness of probability prediction is remarkably improved.
公开/授权文献:
- CN109886452B 一种基于经验动态建模的风电功率超短期概率预测方法及系统 公开/授权日:2021-06-15