![一种基于大数据时空聚类的智慧电网电力负荷预测方法](/CN/2019/1/8/images/201910043165.jpg)
基本信息:
- 专利标题: 一种基于大数据时空聚类的智慧电网电力负荷预测方法
- 专利标题(英):Smart power grid power load prediction method based on big data space-time clustering
- 申请号:CN201910043165.X 申请日:2019-01-17
- 公开(公告)号:CN109784562A 公开(公告)日:2019-05-21
- 发明人: 刘辉 , 陈超 , 徐一楠 , 龙治豪 , 段铸 , 王子琪
- 申请人: 中南大学
- 申请人地址: 湖南省长沙市岳麓区麓山南路932号
- 专利权人: 中南大学
- 当前专利权人: 中科盛世科技有限公司
- 当前专利权人地址: 466000 河南省周口市城乡一体化示范区文昌大道招商大厦26层
- 代理机构: 长沙市融智专利事务所
- 代理人: 龚燕妮
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06Q50/06 ; G06K9/62
The invention discloses a smart power grid power load prediction method based on big data space-time clustering. The method comprises: dividing the power load time sequence into a time vector and a space vector; respectively clustering the time vectors and the space vectors; obtaining N * K space-time clustering categories; wherein each clustering category integrates the characteristics of the power load time sequence in time and space; and then a load prediction model is established for the power load time sequence of each time-space clustering category, and the method analyzes the time-spacecharacteristics of the power load, can effectively identify the influence of time and space on the power load, and effectively and accurately predicts the power load.
公开/授权文献:
- CN109784562B 一种基于大数据时空聚类的智慧电网电力负荷预测方法 公开/授权日:2020-08-25