
基本信息:
- 专利标题: 基于高斯混合噪声生成式对抗网络的物体硬度识别方法
- 申请号:CN201811328795.3 申请日:2018-11-09
- 公开(公告)号:CN109508740B 公开(公告)日:2019-08-13
- 发明人: 王慰 , 钱晓亮 , 赵素娜 , 李二凯 , 曾黎 , 王延峰 , 杨存祥 , 毋媛媛 , 吴青娥
- 申请人: 郑州轻工业学院
- 申请人地址: 河南省郑州市金水区东风路5号
- 专利权人: 郑州轻工业学院
- 当前专利权人: 郑州轻工业学院
- 当前专利权人地址: 河南省郑州市金水区东风路5号
- 代理机构: 郑州大通专利商标代理有限公司
- 代理人: 陈勇
- 主分类号: G06K9/62
- IPC分类号: G06K9/62 ; G06N3/04 ; G06N3/08 ; G01N3/40
The invention relates to the technical field of machine learning, The invention discloses an object hardness identification method based on a Gaussian mixture noise generation countermeasure network,which comprises the following steps of: training a Gaussian mixture noise generation countermeasure network with a small-scale tactile data marking a hardness level as a true value, inputting the Gaussian mixture noise into the Gaussian mixture noise generation countermeasure network, and obtaining large-scale generated samples; Taking the parameters of the discriminator of the Gaussian mixture noise generation type antagonistic network as the initial values of the parameters of the hardness identification network, pre-training the hardness identification network by using the large-scale generated samples, re-training the hardness identification network by using the tactile data marking the hardness level, and determining the parameters of the hardness identification network; inputting Thetactile data to be predicted a into a hardness recognition network to obtain a hardness grade of the tactile data to be predicted. The invention has high hardness identification accuracy.
公开/授权文献:
- CN109508740A 基于高斯混合噪声生成式对抗网络的物体硬度识别方法 公开/授权日:2019-03-22
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |
--------G06K9/62 | .应用电子设备进行识别的方法或装置 |