
基本信息:
- 专利标题: 一种变工况条件下的滚动轴承故障诊断方法
- 申请号:CN201810530399.2 申请日:2018-05-29
- 公开(公告)号:CN108764341B 公开(公告)日:2019-07-19
- 发明人: 张博 , 李伟 , 江帆 , 张梦 , 佟哲
- 申请人: 中国矿业大学
- 申请人地址: 江苏省徐州市铜山区大学路1号
- 专利权人: 中国矿业大学
- 当前专利权人: 中国矿业大学
- 当前专利权人地址: 江苏省徐州市铜山区大学路1号
- 代理机构: 江苏圣典律师事务所
- 代理人: 郝伟扬
- 主分类号: G06K9/62
- IPC分类号: G06K9/62 ; G06N3/04 ; G06N3/08 ; G01M13/04
For a characteristic that the edge distribution of faults under different working conditions is the same, but the condition distribution of each kind of fault samples is changed in scale and position,the invention provides a working condition self-adaptive deep neural network model and a variable working condition fault diagnosis method. The working condition self-adaptive deep neural network model is composed of five parts, including a source domain feature extraction module, a fault classifier, a target domain feature extraction module, a position scale conversion module and a domain difference regularization module. After the fault samples in a source domain are processed by the source domain feature extraction module and the position scale conversion module, the condition distributionof the fault samples is similar to the condition distribution of similar fault samples in a target domain. The difference of sensing data distribution under variable working conditions is overcome; amethod capable of eliminating the influence of the working conditions and acquiring information which only reflects the fault or performance degradation of a rolling bearing is provided, so that thefault diagnosis of the rolling bearing is more accurate; and the method has extremely high popularization values.
公开/授权文献:
- CN108764341A 一种工况自适应深度神经网络模型及变工况故障诊断方法 公开/授权日:2018-11-06
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |
--------G06K9/62 | .应用电子设备进行识别的方法或装置 |