![一种基于贝叶斯小样本学习的表面缺陷检测方法](/CN/2017/1/116/images/201710583489.jpg)
基本信息:
- 专利标题: 一种基于贝叶斯小样本学习的表面缺陷检测方法
- 专利标题(英):Bayesian small sample learning-based surface defect detection method
- 申请号:CN201710583489.3 申请日:2017-07-17
- 公开(公告)号:CN107705284A 公开(公告)日:2018-02-16
- 发明人: 何志勇 , 林嵩 , 张浩
- 申请人: 苏州佳赛特智能科技有限公司
- 申请人地址: 江苏省常州市相城区澄阳路116号阳澄湖国际科技创业园2号楼513室
- 专利权人: 苏州佳赛特智能科技有限公司
- 当前专利权人: 苏州佳赛特智能科技有限公司
- 当前专利权人地址: 江苏省常州市相城区澄阳路116号阳澄湖国际科技创业园2号楼513室
- 代理机构: 苏州市中南伟业知识产权代理事务所
- 代理人: 耿丹丹
- 主分类号: G06T7/00
- IPC分类号: G06T7/00 ; G06K9/00 ; G06K9/46 ; G06K9/62
The invention discloses a Bayesian small sample learning-based surface defect detection method. The method comprises the steps of firstly performing image collection on a detected object in industrialproduction by adopting a linear array industrial camera; converting a collected detected object image into a single-channel grayscale image from an RGB color space; performing sliding window filtering on the detected object image to remove noisy points in the detected object image; performing enhancement processing on defects in the detected object image by using a sobel operator; and selecting anormal training sample and a defective training sample subjected to enhancement as to-be-detected samples in the to-be-detected image, calculating out gradient features of the to-be-detected samplesand performing learning. The calculation processing can be performed according to the gradient features of the detected object by utilizing a Bayesian algorithm in combination with other steps, so that the detection performance and accuracy are improved, the labor can be effectively reduced, the labor intensity is reduced, the working efficiency is improved, and the detection precision is relatively high.
公开/授权文献:
- CN107705284B 一种基于贝叶斯小样本学习的表面缺陷检测方法 公开/授权日:2020-10-09
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06T | 一般的图像数据处理或产生 |
------G06T7/00 | 图像分析,例如从位像到非位像 |