
基本信息:
- 专利标题: 一种基于稀疏自动编码器和灰度关联分析法的卷积神经网络算法优化方法
- 专利标题(英):Convolutional neural network algorithm optimization method based on spare autocoder and gray correlation analysis method
- 申请号:CN201710748921.X 申请日:2017-08-28
- 公开(公告)号:CN107563430A 公开(公告)日:2018-01-09
- 发明人: 刘梦雅 , 毛剑琳
- 申请人: 昆明理工大学
- 申请人地址: 云南省昆明市五华区学府路253号
- 专利权人: 昆明理工大学
- 当前专利权人: 昆明理工大学
- 当前专利权人地址: 云南省昆明市五华区学府路253号
- 主分类号: G06K9/62
- IPC分类号: G06K9/62 ; G06N3/04
The invention discloses a convolutional neural network algorithm optimization method based on a spare autocoder and a gray correlation analysis method, and belongs to the technical field of computer simulation. The method comprises the following steps that: firstly, through the spare autocoder, carrying out unsupervised pre-training on an input image to obtain one group of convolution kernel initial value sets which reflect original input image features; then, utilizing the group of convolution kernel initial values to carry out a convolution and pooling operation on the original input image;and importing the gray correlation analysis method to calculate an association degree between the feature image, which is pooled for the last time, of a sub-sampling layer and a corresponding output result, setting a threshold value, removing feature image data with small association so as to enable the system to automatically select a hidden feature image which has a high influence on an identification result. By use of the method, a false identification rate can be lowered, and verification effectiveness is verified.
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |
--------G06K9/62 | .应用电子设备进行识别的方法或装置 |