
基本信息:
- 专利标题: 基于特征映射迁移学习的电网故障分类方法
- 专利标题(英):Power grid fault classification method based on feature mapping migration learning
- 申请号:CN201710756382.4 申请日:2017-08-29
- 公开(公告)号:CN107491792A 公开(公告)日:2017-12-19
- 发明人: 张化光 , 刘鑫蕊 , 孙秋野 , 于晓婷 , 杨珺 , 王智良 , 赵鑫 , 吴泽群
- 申请人: 东北大学
- 申请人地址: 辽宁省沈阳市浑南区创新路195号
- 专利权人: 东北大学
- 当前专利权人: 东北大学
- 当前专利权人地址: 辽宁省沈阳市浑南区创新路195号
- 代理机构: 大连东方专利代理有限责任公司
- 代理人: 王丹; 李洪福
- 主分类号: G06K9/62
- IPC分类号: G06K9/62
The invention discloses a power grid fault classification method based on feature mapping migration learning. The method comprises the steps that 1 target domain data and auxiliary source domain data are selected; 2 fault feature extraction is carried out on the target domain data and the auxiliary source domain data based on micro-increment wavelet singular entropies; each micro-increment wavelet singular entropy is used as a fault feature; an eigenvector space corresponding to the target domain and an eigenvector space corresponding to the auxiliary source domain are formed respectively; 3 based on a feature mapping migrate learning method, basis vectors corresponding to an axis feature, the unique feature of the auxiliary source domain and the unique feature of the target domain respectively are found; and 4 the acquired basis vector corresponding to auxiliary source domain is used as a support vector; a similarity penalty term is set, and the constraints of a support vector training set is added to jointly train a classifier to acquire a corresponding classification result. According to the invention, three groups of basis vectors which can best embody the fault category can be accurately and quickly found.
公开/授权文献:
- CN107491792B 基于特征映射迁移学习的电网故障分类方法 公开/授权日:2020-04-07
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |
--------G06K9/62 | .应用电子设备进行识别的方法或装置 |