![风电功率概率预测方法及装置](/CN/2017/1/11/images/201710055611.jpg)
基本信息:
- 专利标题: 风电功率概率预测方法及装置
- 专利标题(英):Wind power probability forecasting method and forecasting device
- 申请号:CN201710055611.X 申请日:2017-01-25
- 公开(公告)号:CN107067099A 公开(公告)日:2017-08-18
- 发明人: 汪宁渤 , 乔颖 , 马明 , 吕清泉 , 陈钊 , 吴问足 , 周强 , 鲁宗相
- 申请人: 清华大学 , 甘肃省电力公司风电技术中心 , 国网甘肃省电力公司 , 国家电网公司
- 申请人地址: 北京市海淀区清华园1号; ; ;
- 专利权人: 清华大学,甘肃省电力公司风电技术中心,国网甘肃省电力公司,国家电网公司
- 当前专利权人: 清华大学,甘肃省电力公司风电技术中心,国网甘肃省电力公司,国家电网公司
- 当前专利权人地址: 北京市海淀区清华园1号; ; ;
- 代理机构: 北京华进京联知识产权代理有限公司
- 代理人: 王程
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06Q50/06 ; G06K9/62
The invention relates to a wind power probability forecasting method and a forecasting device. The method comprises the steps of according to a historical output power and a historical forecasting power, acquiring a statistics characteristic of a wind power station forecasting error; according to the historical forecasting power and a wind speed fluctuation amount of a NWP forecasting result of the wind power station, acquiring a wind power probability forecasting condition total set; dividing the condition total set to a plurality of condition subsets through a K-means clustering algorithm; forming condition experience distribution of an error set in each condition subset, and checking the digital characteristic of the condition experience distribution is superposed with the digital characteristic in the statistics characteristic of the wind power station forecasting error; and if yes, performing clustering through the K-means clustering algorithm; and acquiring a wind power probability forecasting result according to the wind power forecasting result at each time point and the condition experience distribution. The invention further relates to a forecasting device. The wind power probability forecasting method provided by the invention can differently supply error distribution functions and has higher forecasting accuracy.
公开/授权文献:
- CN107067099B 风电功率概率预测方法及装置 公开/授权日:2020-06-19