![基于加权强度PCNN模型的分块人脸识别方法](/CN/2017/1/23/images/201710119765.jpg)
基本信息:
- 专利标题: 基于加权强度PCNN模型的分块人脸识别方法
- 专利标题(英):Partitioning human face recognition method based on weighted intensity PCNN model
- 申请号:CN201710119765.0 申请日:2017-03-02
- 公开(公告)号:CN106709480A 公开(公告)日:2017-05-24
- 发明人: 邓红霞 , 李海芳 , 郭浩 , 相洁 , 曹锐 , 李瀚 , 杨晓峰
- 申请人: 太原理工大学
- 申请人地址: 山西省太原市迎泽西大街79号
- 专利权人: 太原理工大学
- 当前专利权人: 谷德智能科技研究院(山西)有限公司
- 当前专利权人地址: 山西省太原市迎泽西大街79号
- 代理机构: 太原科卫专利事务所
- 代理人: 朱源
- 主分类号: G06K9/00
- IPC分类号: G06K9/00 ; G06K9/62
The invention relates to a human face recognition method based on a PCNN model, specifically a partitioning human face recognition method based on a weighted intensity PCNN model. The invention solves problems that a conventional human face recognition method based on the PCNN model is not fine in description of image features, carries out no-difference processing of the whole human face image through a group of parameters, and neglects the differences of all parts of a human face. On the basis of simplifying the PCNN model, the invention proposes the weighted intensity PCNN model, introduces the concepts of emission intensity of a spontaneous pulse, the emission intensity of a coupled pulse and the weighted intensity, and refines the output of the model. Meanwhile, the method employs the partitioning recognition during human face recognition. The method comprises the steps: enabling a human face image to be divided into blocks according to the difference of gray scale distribution of all parts of the human face image and the difference of local resolutions before recognition; adaptively setting the weight value of blocks according to the image blocks during recognition; finally enabling the recognition result of each block to be integrated in the recognition result of one human face image.
公开/授权文献:
- CN106709480B 基于加权强度PCNN模型的分块人脸识别方法 公开/授权日:2018-07-10
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |