![电力系统风险调度方法和系统](/CN/2016/1/176/images/201610882652.jpg)
基本信息:
- 专利标题: 电力系统风险调度方法和系统
- 专利标题(英):Electric power system risk scheduling method and system
- 申请号:CN201610882652.1 申请日:2016-10-08
- 公开(公告)号:CN106296044A 公开(公告)日:2017-01-04
- 发明人: 郭晓斌 , 许爱东 , 简淦杨 , 魏文潇 , 占恺峤 , 史训涛 , 谭勤学 , 吴俊阳 , 韩传家 , 余涛
- 申请人: 南方电网科学研究院有限责任公司 , 中国南方电网有限责任公司电网技术研究中心 , 华南理工大学
- 申请人地址: 广东省广州市越秀区东风东路水均岗8号
- 专利权人: 南方电网科学研究院有限责任公司,中国南方电网有限责任公司电网技术研究中心,华南理工大学
- 当前专利权人: 南方电网科学研究院有限责任公司,中国南方电网有限责任公司电网技术研究中心,华南理工大学
- 当前专利权人地址: 广东省广州市越秀区东风东路水均岗8号
- 代理机构: 广州华进联合专利商标代理有限公司
- 代理人: 黄晓庆
- 主分类号: G06Q10/06
- IPC分类号: G06Q10/06 ; G06Q50/06
The invention relates to an electric power system risk scheduling method and system. The method includes the following steps: acquiring the architecture data of an electric power system and the load profile data of a new task; based on the architecture data and the load profile data of the new task, using the bacterial foraging algorithm to iterate a preset initial knowledge matrix to obtain a corresponding risk scheduling object function value and a updated knowledge matrix; based on the updated knowledge matrix corresponding to the minimum risk scheduling object function value, online optimizing the new task to obtain the result of the risk scheduling optimization and outputting the result; the optimal knowledge matrix of a source task serving as the initial matrix of the new task for conducting knowledge transfer, and using the bacterial foraging algorithm of the knowledge transfer to conduct online optimization on the new task. Transfer learning greatly increases the speed of online learning, achieves online dynamic optimization of risk scheduling, can guarantee rapid resolution when a problem develops, and can adapt to rapid optimization of large-scale and complex risk scheduling.
公开/授权文献:
- CN106296044B 电力系统风险调度方法和系统 公开/授权日:2023-08-25