![一种基于大数据思维模式的短期负荷预测方法](/CN/2016/1/78/images/201610394903.jpg)
基本信息:
- 专利标题: 一种基于大数据思维模式的短期负荷预测方法
- 专利标题(英):Big data thinking mode-based short-term load forecasting method
- 申请号:CN201610394903.1 申请日:2016-06-06
- 公开(公告)号:CN106096766A 公开(公告)日:2016-11-09
- 发明人: 谢林枫 , 王纪军 , 郑海雁 , 熊政 , 蒋一泉 , 李新家 , 吴钢 , 尹飞 , 仲春林 , 方超 , 李昆明 , 季聪 , 王云峰
- 申请人: 国网江苏省电力公司 , 江苏方天电力技术有限公司 , 国家电网公司
- 申请人地址: 江苏省南京市鼓楼区上海路215号
- 专利权人: 国网江苏省电力公司,江苏方天电力技术有限公司,国家电网公司
- 当前专利权人: 国网江苏省电力公司,江苏方天电力技术有限公司,国家电网公司
- 当前专利权人地址: 江苏省南京市鼓楼区上海路215号
- 代理机构: 南京纵横知识产权代理有限公司
- 代理人: 董建林
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06Q50/06
The invention discloses a big data thinking mode-based short-term load forecasting method. According to the method, a thought of big data is adopted; correlativity is established between electric load of each industry and a corresponding total network supplied load; analysis processing is carried out on generated loads; a load proportion model of each industry in different regions is constructed to realize the load forecasting of each industry in each region; and finally summarization is carried out to form a whole province network supplied load. By adopting the method disclosed by the invention, short-term forecasting for the load of one day, in the future, of the whole province and each region is realized, and basis is provided for the decision of electric power systems.