![一种基于分段的两级深度学习模型的大数据处理方法](/CN/2015/1/22/images/201510111904.jpg)
基本信息:
- 专利标题: 一种基于分段的两级深度学习模型的大数据处理方法
- 专利标题(英):Big data processing method for two-stage depth learning model based on sectionalization
- 申请号:CN201510111904.6 申请日:2015-03-13
- 公开(公告)号:CN106033554A 公开(公告)日:2016-10-19
- 发明人: 王劲林 , 尤佳莉 , 盛益强 , 李超鹏
- 申请人: 中国科学院声学研究所 , 上海尚恩华科网络科技股份有限公司
- 申请人地址: 北京市海淀区北四环西路21号
- 专利权人: 中国科学院声学研究所,上海尚恩华科网络科技股份有限公司
- 当前专利权人: 中国科学院声学研究所,上海尚恩华科网络科技股份有限公司
- 当前专利权人地址: 北京市海淀区北四环西路21号
- 代理机构: 北京方安思达知识产权代理有限公司
- 代理人: 王宇杨; 杨青
- 主分类号: G06N3/08
- IPC分类号: G06N3/08
The invention discloses a big data processing method for a two-stage depth learning model based on sectionalization. The big data processing method based on a sectioned two-stage depth study model comprises steps of 1) constructing and training a two-stage depth study model based on sectionalization, wherein the two-stage depth study model is divided into two stages from vertical levels: a first stage and a second stage, each level of the first stage is divided into M sections transversely, and weight between adjacent neuron nodes in different sections in the first level is 0, 2) dividing big data to be processed into M subsets according to data types, respectively inputting the M subsets into M sections of the first level of the two-stage depth learning model based on sectionalization for processing, and 3) outputting a big data processing result. The two-stage depth learning model based on sectionalization can effectively reduce a model scale and shortens training time of the model, and the big data processing method can improve big data processing speed and shortens processing time.