
基本信息:
- 专利标题: 一种基于模糊熵的癫痫脑电信号分类方法
- 专利标题(英):Epilepsy electroencephalogram signal classification method based on fuzzy entropy
- 申请号:CN201610289472.2 申请日:2016-05-04
- 公开(公告)号:CN105956623A 公开(公告)日:2016-09-21
- 发明人: 曹锐 , 相洁 , 郭浩 , 李海芳 , 陈俊杰 , 郭发云
- 申请人: 太原理工大学
- 申请人地址: 山西省太原市迎泽西大街19号
- 专利权人: 太原理工大学
- 当前专利权人: 太原理工大学
- 当前专利权人地址: 山西省太原市迎泽西大街19号
- 代理机构: 北京科亿知识产权代理事务所
- 代理人: 汤东凤
- 主分类号: G06K9/62
- IPC分类号: G06K9/62 ; G06K9/46
The invention discloses an epilepsy electroencephalogram (EEG) signal classification method based on fuzzy entropy, comprising performing fuzzy entropy analysis on attack intermission EEG signals and attack stage EEG signals; through characteristics, selecting and extracting fuzzy entropy of a reaction signal characteristic corresponding electrode as an input characteristic; and employing a screened fuzzy entropy of a corresponding electrode as an input characteristic to perform classification detection on epilepsy EEG signals. The method comprises characteristic calculation, characteristic extraction and classification modules, wherein characteristic calculation and extraction modules employ fuzzy entropy to analyze attack stage EEG signals and attack intermission EEG signals, and select an electrode with large KS detection difference as characteristic input; the classification module utilizes a support vector machine to perform classification detection on epilepsy EEG signals, and a support vector machine algorithm converts a problem into a dichotomy problem, thereby reducing calculating complexity; meanwhile, the method possesses good instantaneity, can be used for epilepsy detection and early warning, and has high sensitivity, singularity and accuracy.
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06K | 数据识别;数据表示;记录载体;记录载体的处理 |
------G06K9/00 | 用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置 |
--------G06K9/62 | .应用电子设备进行识别的方法或装置 |