
基本信息:
- 专利标题: 基于局部统计特征的自适应梯度阈值各向异性滤波方法
- 专利标题(英):Local statistical feature-based adaptive gradient threshold anisotropic filtering method
- 申请号:CN201610165932.0 申请日:2016-03-22
- 公开(公告)号:CN105844596A 公开(公告)日:2016-08-10
- 发明人: 高静 , 高天野 , 史再峰 , 徐江涛
- 申请人: 天津大学
- 申请人地址: 天津市南开区卫津路92号
- 专利权人: 天津大学
- 当前专利权人: 天津大学
- 当前专利权人地址: 天津市南开区卫津路92号
- 代理机构: 天津市北洋有限责任专利代理事务所
- 代理人: 刘国威
- 主分类号: G06T5/00
- IPC分类号: G06T5/00 ; G06T5/10
The invention belongs to the image processing field and relates to an adaptive anisotropic filtering method. With the method adopted, a gradient threshold value can be changed according to local statistical features, and in anisotropic diffusion, the weights of different pixels are dynamically adjusted, so that the denoising ability of anisotropic filtering in a high-intensity noise environment can be improved. According to the local statistical feature-based adaptive gradient threshold anisotropic filtering method provided by the technical schemes of the invention, based on an anisotropic filtering algorithm, a gradient operator is utilized to identify image gradient change caused by noises and image gradient change caused by edges, neighborhood weighted averaging is adopted to remove small gradient change caused by noises and retain large gradient change caused by edges, and the above process is carried out iteratively until noises in an image are removed. The method of the invention is mainly applied to image processing.
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06T | 一般的图像数据处理或产生 |
------G06T5/00 | 图像的增强或复原,如从位像到位像地建立一个类似的图形 |